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FOREWORD

This report is one of a series in the field of structural dynamics prepared
under contract NAS 8-11486. The series of reports is intended to illustrate methods
used to determine parameters required for the design and analysis of flight control
systems of space vehicles. Below is a complete list of the reports of the series.

Volume I Lateral Vibration Modes

Volume IT Determination of Longitudinal Vibration Modes

Volume IIT Torsional Vibration Modes

Volume IV Full Scale Testing for Flight Control Parameters

Volume V Impedence Testing for Flight Control Parameters

Volume VI Full Scale Dynamic Testing for Mode Determination

Volume VII The Dynamics of Liquids in Fixed and Moving
Containers

Volume VIII Atmospheric Disturbances that Affect Flight Control
Analysis

Volume IX The Effect of Liftoff Dynamics on Launch Vehicle
Stability and Control

Volume X Exit Stability

Volume XI Entry Disturbance and Control

Volume XII Re-entry Vehicle Landing Ability and Control

Volume XIII Aerodynamic Model Tests for Control Parameters
Determination

Volume X1V Testing for Booster Propellant Sloshing Parameters

Volume XV Shell Dynamics with Special Applications to

Control Problems

The work was conducted under the direction of Clyde D. Baker and

George F. McDonough, Aero Astro Dynamics Laboratory, George C. Marshall
Space Flight Center. The General Dynamics Convair Program was conducted under
the direction of David R. Lukens.
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INTRODUCTION

For well over a century, scientists and engineers have evidenced an interest
in the dynamics of solids containing liquid cavities. Apart from the classical
contributions reported in Lamb's first edition of "Hydrodynamics' (1895), only
recently has the problem of a partly filled cavity with free surface been explored.
Numerous articles devoted to this problem have been published in various countries.
This was stimulated by a great number of technical problems requiring the
determination of the motion of a body with partly filled liquid cavity. Examples of
these include anti-roll passive tank stabilization systems employed in ocean-going
ships, dynamics of rockets, and seismic oscillations of structures under water
pressure,

The combined efforts of workers in the field have given us a comprehensive
theory branching out in several directions. To present this theory completely is
beyond the scope of this study; therefore the discussion is not general but is
restricted to those aspects concerning stability and control of liquid-rocket powered
missiles and space vehicles.

That the effect of liquid propellant motions must be considered in the design of
most liquid-rocket powered missiles and space vehicles is well known; for the most
part, the problem is one of vehicle stability and control. Generally, the propellant
motions interact with both the control system and vehicle dynamics, which also
couple with each other. The natural frequencies of the oscillating propellants are
usually much closer to the rigid body control frequencies than to the elastic body
frequencies. If the natural frequencies of the propellants become too close to the
control frequency of the vehicle or the natural frequency of the control sensor, the
situation may become critical. Under these circumstances, the oscillating propellants
exert large forces and moments on the vehicle, which may saturate the control system
and ultimately lead to structural failure. Thus, the responses of forces and moments
exerted by the vibrating propellants on the vehicle must be sufficiently well defined
analytically so that their effects can be incorporated into analyses of the overall system
dynamic behavior.

Some recent surveys [ 1, 2 ] catalogue the numerous papers available in the
field; in the main, the studies cited therein treat general and specific problems of
the motion of liquids in fixed and moving vessels. The methods used in these studies
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are varied, and the assumptions are based on approximations which are sometimes
confusing and difficult to justify. We will not discuss these papers in detail; however,
a perusal of them by the reader will disclose an apparent lack of agreement as to

the exact analytic statement for the motion of liquids enclosed in moving containers.
Moreover, the usual method of obtaining the forces exerted on a space vehicle by
oscillating propellants is to compute the liquid reactions forces assuming that the
motion of the propellant tanks does not depend on the dynamic state of the vehicle.
These reaction forces then are treated as generalized forces acting on the vehicle

in an arbitrary state of motion. This computation of events generally gives rise to
"equivalent" mechanical models, which are then combined with similar representations
for other dynamic elements of the vehicle to obtain the overall system dynamic models.
Generally, in such an investigation the analyst uses a reference system moving with
respect to inertial space. Invariably, the motions of the propellant tanks are
linearized with respect to the tank rates, both translation and rotation. These rates,
in turn, depend on the vehicle body rates. The arbitrary linearization of the equations
of motion with respect to the body rates is questionable and can lead to serious
difficulties. This and the fact that the propellant tanks have not been considered as an
integral part of the vehicle make it difficult for the engineer to properly assess the
attitude stability characteristics of liquid propellant space vehicles.

There appears to be a need for an analytical review that will clarify concept
and introduce the engineer to the more advanced works and the research literature.
The main purpose of this investigation is to satisfy this need. To avoid becoming
a collection of formulae, many fundamental notions presented elsewhere are
included in detail. An excellent collection of such formulae may be found in
[3, 4, 5], to which the reader is referred.

The basic materials treated have been kept as modest as possible. A brief
review of certain fundamental results from theoretical hydrodynamics necessary
to describe the motion of a heavy liquid enclosed in a rigid vessel which is itself
in motion is presented. An energy formulation of the system (vessel plus liquid)
is written for six degrees of freedom. These concepts are then extended to the
case of the planar motion of a liquid propellant vehicle having a single tank and
engine. For simplicity the tank is taken to be a prismatic cylinder. The results
apply trivially to more than one tank and engine. The planar equations of motion
are then used to obtain the perturbation equations of motion. To this end, the
vehicle motion is treated as a summation of perturbations from a known reference
motion and motion in which vehicle body axes remain coincident with reference
axes. The role of the liquid motions in the perturbation equations are then isolated
and identified. The liquid in the propellant tank is replaced by a simple mechanical
system (system of pendula plus discrete mass and moment of inertia), and planar
perturbation equations for the entire vehicle are derived. The effects of the
mechanical system motions in the perturbation equations are isolated and identified.
The role of the liquid motions and mechanical system motions are compared to show



that the mechanical system can duplicate the action of the liquid. The analysis

is extended to tanks of arbitrary shape having rotational symmetry, such as
commonly occurs in most vehicles. The role of the liquid motions and mechanical
system motions are again compared. The oscillations of a heavy liquid in a fixed
vessel are treated. In addition, the oscillations of systems of solid bodies with a
liquid (systems with a liquid "member') are considered.

The review does not deal with the two directions in which intensive investigations
are being currently conducted. These are non-linear oscillations and the problem of
damping, A study of these questions involves difficulties of a fundamental nature.

A number of algorithms pertaining to the theory of non-linear oscillations have been
published, but all of them are unwieldly and, most important, no one has thus far
managed to prove their convergence. Moreover, the very question of the existence
of periodic solutions of resulting non-linear systems still remains open. Even more
complicated is the problem of oscillation of a viscous liquid. The formulation of
the problems comprises a great number of difficulties. The problems of the
dynamics of a body with a liquid under conditions of weightlessness have become
pertinent most recently, but only the first steps have so far been made in this
direction and it is still premature to speak of results.

1-4
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BASIC EQUATIONS FOR MOTION OF A HEAVY LIQUIb ENCLOSED IN
A PARTLY FILLED VESSEL WHICH IS ITSELF IN MOTION

Consider the motion of a frictionless liquid enclosed in a partly filled vessel
which is itself in motion, Fig. 1. To describe the motion of the system, take a
cartesian frame of reference fixed relatively to the container, say an origin o and
three axes ox, oy, 0z. Reference oxyz is orientated in such a manner that oz is
measured positively along the outward directed normal to the undisturbed free
surface. Thus the free surface, denoted by S(t), coincides with plane xoy (the
plane z = o) when the container and liquid are at rest.

Let
z=C(x,y, 1) (2.1)

be the equation of S(t) when it is displaced. Denote by Z (t) the wetted surface of
the vessel, and by T (t) the variable volume enclosed by S(t) and Z(t). LetZ, T,
and S represent the corresponding values of Z(t), T (t) and S(t) in the undisturbed
position. All surfaces are assumed to be piece wise smooth. ’

Suppose that at time t the vessel is coincident with inertial space and that
it is moving relatively to inertial space with motion described by an observer in
inertial space as a velocity u of o and an angular velocity @ . Then the position
vector T of a particular liquid particle Pe T(t) at time t is the same for an
observer moving with the vessel as it is for an observer in inertial space.

The point P, if rigidly attached to the moving frame of reference oxyz, has
the velocity

V=u+Wxr. (2.2)

Thus, if P is fixed in inertial space instead of in oxyz, it will appear to an observer
in oxyz to move with velocity -V.

Denote by q(P, t), v(P, t) the velocities of the liquid particle at point
P(x, y, z) € T(t) at time t as estimated by observers in inertial space and
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Figure 1. Partially filled vessel in motion.
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oxyz respectively. Then

a=\'r+w7,'x‘r=gr;.", (2.3)

in which the position vector T is referred to the moving reference oxyz.

Assume the liquid to be homogeneous and incompressible throughout the
motion. Moreover, neglect interfacial tension forces and capillary contact effects
between liquid and boundary. Then, the motion of the liquid in T (t), when
referred to the moving frame of reference oxyz, is completely described by the
following formulae:

Equation of motion

G, G xa =% .00 x T+ OxF+ P x(DxF +a=F-1v T
It xq dt+2 X V+Wxr+Wx(wxr)+a=t1 o p, PeT(t),
8 _33 . [g-vlg -4 39)7, a=3iodxq, PeT(t) (2.9
dt 3t 4 g T )V dt @
Equation of continuity

Vg =99 =0, PeT(t) (2.9)

Boundary conditions (kinematical)
G - Vo = va = 0, Pe L(t) (2.6)
dn - Vi = L+ cos (n, z), PeS(t)
Boundary conditions (physical)
p-LZ(), 2.7
p(x, v, £, t) = const., Pe€ S(t)
Forces and moments

Fo=pJT g_'q_ ar +p[J@xwmar- pfJfiar + p[f G, cos(n, 23ds (2.8
Tty °° T (1) T(t) S(t)



=pfff ¥ ar+2p [[[@xwar+p [[@xpar+ o [[[ @ x @ x 2)ar
(1) T T T

- pﬂf - adr+p ﬂ ¥ €, cos(n, z)ds,
T (%) (t)

-L=p[f & x —g—_?)dr +p [l @(re -a(@s)ldr -p [ @ x Har
T(t) T(t) T(t)

+p ‘”‘ (T x 9, cos(n, z)ds

S(t)
=pfl & xg—:’)dr r2pflf (& (z9) w(@5)]ar + p [ (@F) F x @)
T (V) T(t) T(t)
+p[ff to(sp)-s(@s)ldr -pfI[ (7 x (F-5)lar
T (t) T (t)

+ pﬂ (r x v) €, cos(n, z)ds
S(t)

in which f is the vector of body forces (such as gravity) per unit mass; p is the
mass density; p is the pressure intensity at point P(x, y, z) (independent of
direction); a is the absolute acceleration of 0 as measured by an observer in
inertial space.

Formula (1.4) is the second law of motion applied to a liquid particle of
infinitesimal volume, and can also be obtained immediately from Euler's
equation on application of the classical expression for rates of change of a
vector viewed from inertial and moving space. Note that the equation of motion
is expressed in either of two forms; one of which is in terms of the absolute
velocity 4, and the other in terms of the relative velocity v.

Formula (1.5) states that the net flow rate of liquid into any small volume
must be zero. It likewise is expressed in either of two forms.

Formula (1.6) is the kinematic condition which must be satisfied at the
solid boundary Z (t), namely, that the component of velocity normal to the
boundary must be equal to the velocity component of the boundary normal to itself.
Note that the component of relative velocity normal to Z (t) is zero, va = 0;



the component of the absolute velocity normal to Z (t) is equal to V,, the velocity
of the boundary normal to itself. This follows from the relationship (2.3).

Formula (2.6z) is the kinematic condition which must be satisfied gt the free
surface, Lord Kelvin's condition, and is a corollary of (2. 5).2 Li(= )

is the apparent velocity of movement of the free surface S(t) in the direction oz;
i.e., {. is the velocity of movement along the straight line x = const., y = const.,
of the point of intersection of the surface z = { with this straight line.

Formula (2.7.) states that for a frictionless liquid in contact with a rigid
boundary, the liquid thrust shall be normal to the boundary.

. Formula (2. 72) expresses the constancy of pressure at the free surface S(t).
Formula (2.8,), expressed in either of two forms, is the computation of the
force resulting from the action of the liquid motion on the vessel surface Z(t). It

is obtained from an integration of formula (2.4) throughout 7 (t) and application of
the divergence theorem and formulae (2.5, 6, 7).

Formula (2. 82) is the computation for the moments about the origin of the
forces exerted by the liquid on the vessel surface Z (t).

There is an important corollary to formula (2.4) concerning the vorticity
of liquid elements. Let the extraneous body forces be conservative,

=-vQ (2.9)

then, on introducing formula (2.9) into (2.4) and operating with Vx on the resulting
equation of motion, we get

—g;(th'i)+‘7->x(vxf1)=[(vxc‘;)V]q, (2.10)
g—t<an)=§—t (vxa)+(g-NvI(vxg),
and (.11

d (vx7)+ @x(Vxd)+2®=2v(®7) - @x (vx¥)+ [(vx¥)v]¥,

2See notes.



g?(v X %) -_-%-%(Vx )+ @) @x9) ,

in which (Vv x @) is the absolute vorticity of liquid elements and (Vv x ¥) the relative
vorticity of liquid elements, that is, the vorticity as measured by an observer in
inertial and moving space respectively. (vx El) and (V x ¥) are not independent.
Indeed, operating on (2.3) with Vx we see

Vxg =20+ (Vx7) (2.12)

Consider a liquid particle which has no vorticity vx Ei) = 0; from (2.10),
it follows that

alv x 'g)= 0
dt ’

and therefore the particle never acquires vorticity. This implies that if

vVxag =0 (2.13)
At some time t = to, then it is zero for all time, and

Vx9)=-2& (2.14)
using (2.12).

There is a significant corollary to formula (2.5) concerning the flux of the
liquid. From the divergence theorem

H vy ds = ﬂ:r Vydar ,

Z(t) + St) T(t)
which, in light of formulae (2.5, 6), gives

ﬂ' {icos(n, zyds =0. (2.15)
S(t)

It is known that the most general solution of formula (2. 5) can be expressed
in either of the two forms [ 6 ]

=% +@, %0 =Ve,Va =0, (2.16)

<
I

Vo+W, o=V, Vih =0.
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Vectors {pand vy are the irrotational components of the absolute and relative
velocity vectors respectively. @, Vi are the corresponding vortical components.

Substituting (2.16) into formula (2. 5), we obtain
Vo=vVY=0, (2.17)

which states that the irrotational components of the absolute and relative velocity
vectors must satisfy Laplace's equation.

When there is no vorticity
=0, (2.18)
Vxw=-2@,
formulae (2, 10, 11) are satisfied identically and the absolute velocity is completely
determined to within an arbitrary additive function of time by the velocity

potential ¢.

Formula (2.183) is satisfied identically if we take

¥, = -Wx T (2.19)
Thus the relative velocity becomes
v=Vp-@wxT (2.20)

Introducing formulae (2.16,) with @ = 0 and (2.20) into (2.4) and integrating
the resulting equation of motion, we get

p,o¢ 1 2 1lys_ 2.21
p+at+9+2V22V D(t) (2.21)
P+ 2Y¥ +Q +ar +L v -1 (@x 7P = Ccr)
p 9t 2 2
where
V= VP-|@xEP = |Ve-V]P, VPV, f=-VQ,

2-8



and D(t), C(t) are instantaneous constants, that is, functions of t only.
Therefore at a given instant the constants have the same value throughout the liquid.
Expression (2.21) is the unsteady pressure equation expressed in either of two forms.

Substituting formulae (2.16,) with ¢ = 0 and (2.20) into the boundary conditions
(2.6), we obtain

%—g—:— = G + W [y cos (n,z) - z cos (n, y)] + % [z cos (n, x) - x cos (n, z)]
+ w, [xcos (n, y) - ycos'(n, x)], Pe (), (2.22)
%i::— = @i + Wy [y cos (n, z)- zcos (n, y)] + wy [z cos (n, x) - x cos (n, z)]
+ w, [x cos (n, y) ~ y cos (n, x)] + L, cos (n, z) , PeS(t) ,
—g—-‘ﬁ- = w, [ycos (n, z) - zcos(n, y)] + @[z cos (n, x) - xcos (n, z)]
+ w, [xcos (n, y) -ycos (n, x)], PeT (1),
-g—;lw— = w, [y cos (n, z) - zcos (n, y)] + w, [z cos (n, x) - x cos (n, z)]
+ W, [x cos (n, y)- ycos (n, x)]+ ¢, cos (n, z), Pe S(t),
where cos (n, x), ... denote the cosines of the angles formed by the outward

directed normal to the surface of contact at the point P.
Introduce a new potential ¢ such that
$= Ul - wy yz - W, xy—w,xz+fot75u2 dt + ¢, (2.23)
Y = -Weyz - Wyxz - W Xy + @,
=¥+ Gr +I°t%u2dt.
then it follows from (2.17, 21, 22) that
Ao=0, Pe T(t), (2.24)

% +—g—-?-dl,yz—w,xz-¢bzxy+5i'+ Q+2v-2%(@x 7P = Ct), PeT(t),
(2.25)



—g—g = 2 [weycos (n, z) + W zcos (n, x)+w,xcos (n, y)], PeZ (t) | (2.26)

2 [wyycos(n, z)+wyzcos (n, x)+ w; x cos (n, y)I+ ¢, cos (n, z),
Pe S(t) .

Since the pressure must be independent of position at the free surface we require

¢ - Wy yz - Wy Xz - @, xy+aF + Q+2v3-2(@ x FR =0, PeS(t), (z=20),
3t (2.27)

which is the condition (2.72). The forces and moments (2. 8) become

-F) _pjﬁaa (.a_£)d1’+'§pj‘ﬁ‘ g"a ar-p[[f txar+pa, [[J ar (2.28)
T(t T(t) "X T(t) T(t)

-P(“’? + UJ?) ﬂ“j‘x dr + p(wx Wy - wz) ﬂT yd1'+ p(wz Wy - "by) -JIF z d7

T T(t) T(t)
-F;y—PI‘U (ég)dT+EP,HIavsz p‘fﬂfydT+payJHdT
Tt 0y Ot T(t) 0¥ T(t) T(t)

+p (W wy- ) [[fxdr-pwz + ) [[fydr+ plw, w-a) [[Jzar
T(%) T(t) T(t)

z‘P.ma (_‘P) d'r+gpj'ﬂ oV ar-p [[f £, dar + pa, [[]ar

T(t) ° T(t) °2 T (t) T(t)

rplwe w, - @, )ﬁ]‘xdﬂp(w, w,- @) [[fyar-pg +«d) [[[zar
T(t) T (t)

L, =p Iy 2 (29)- 22 <a_se>] ar+dp [ G2 -z 3 ar
T(t) T(t) OZ oy

-pﬂ'f(yfz- z f,)dT+ p a, ‘m‘ydT- pa, [Jlzdr
T(t) T(t) T(t)

+pwyw,-®) [Txyar-p(w w-a) [[xzar
T (t) T(t)
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+p(w, w, - &) my“ dr .+ p(u? - u?) myzdf
T(t) T (t)

-p(wy w, - ) [[J 22 ar

T(t)
Li,=pfff [z2 (3¢)-x 2 (_‘P)]d'r+§pﬂf(za"a x 2% Yar
T(t) Ox Ot 3z Tty °x 3z

o[l (2t - x£,) dr - pa, [[[ x dr+ pa, [[[ zdr -p(w, w, - &) [[[ R ar
T(t) T(t) T(t) T(t)

'p(wywz'wx),l“ﬂ‘xyd'r +P(w3 '“Jg)MXZdT"'p(wxwv’wz).r»”‘yZdT

T(t) T(t) Tt

+plw, w, - &) [[[2z2ar
T (t)

Li,=pf (x2 (30 -y 2 (—‘P)]d1'+§Pm(xa— -y V) ar
T(t) Oy dx Tty Y i

-p‘f‘”‘(xf, - yf,)d1'+pa,‘££rxd7-p a,ﬂIy dr+ p(w, w, - Q)ﬂfﬁdT
T(t) T(t) T(t) T (1)

+p2-?)[[[xydr+p(w w- d).)ﬂfxzd‘r-P(wxwy-d-‘z)fﬂyz dr
T(t) T(t) T(t)

‘p(wxwz""by).”:rysz
T(t)

Given u, W, certain initial conditions and the geometry of the vessel, we

can in principle find ¢ . With ¢ known, the motion of the liquid and its important
consequences are completely determined. It should be pointed out that without
further knowledge of w and i, except insofar as they are given functions of time,
we cannot logically discard nonlinearities involving them.

The problem as stated is somewhat academic because in dynamic studies

of aerospace vehicles u and @ are not given functions of time which are




independent of vehicle motion and orientation with respect to inertial space.
In reality they depend on the body rates of the vehicle and consequently are not
known until the total motion of the system is known.
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SUMMARY OF FUNDAMENTAL RESULTS

The basic equations describing the motion of a liquid enclosed in a partly
filled vessel which is itself in motion have been derived. Principal assumptions
employed in the derivation were:

(1) frictionless liquid;
(2) homogeneous liquid;
(3) liquid incompressible throughout motion;
(4) interfacial tension forces and capillary contact effects
between liquid and boundaries neglected;
(5) liquid motion irrotational as viewed by an observer
in inertial space.
The pertinent formulae derived are:
(1) Velocities
d=u-wWVyz-wVxz-w, VXxy + VO (2.29)
v = —wayz—waxz-wz ny + V¢

(2) Equation of motion

£+_g_‘/’—cbx yz-W, xz-0, xy+ar+Q+3 v¥-3(0xFF=C(t) (2.30)
t

(3) Equation of continuity

]
(=]

Ao
(4) Boundary conditions (kinematical)

_g_-‘ﬁ. = 2[w yecos(n, z)+wyzcos (n, x)+w, xcos (n, y)I, PeT (t), (2.3))

2 [wy ycos (n, 2) +wyzcos (n, x)+w,xcos (n, y)J + L cos (n, z), Pes(t),

Il ¢, cos (n, 2)ds =0
S(t)



)

(5) Constancy of pressure at free surface
-g%-di,yz-d:,xz-lb,xy+ii'~+0+§v’—i(¢5xi‘)’=0, z=L (2.32)

(6) Forces and moments

-Fi =pj'ﬂ 3 (__‘B.)d1'+§P.£”‘a‘ﬂ dar- pm f.dT+ pa, m dr (2.33)
T(y 2x 3t T(t) O% T(t) T(t)

-p(u? + u?) ﬂ'fx dar+ p(w, w, - @) Mydf+ plw, w, - w,) ﬂT z dT

T(t) T(t) T(t)
-Fl’spma (?.‘E)d‘r+%pmg"adf p[[lt, dr +pa, [J[ar
() 2y Ot T(t) °Y T(t) T(t)

+p (w, Wy - @,) J‘ﬂ‘x-d'r" pla? + wg) myd‘r"‘ p (w, wy - wl)ﬂIZdT
T(t) T(t) T(t)

-F, _pma (29) dT+%p|”I 3V gr- pm f, dT + pa, ﬂIdT
T() 9z Ot T(t) o2 T(t) T(t)

+plwy w, - @, )mxd1'+p(w wz—wx)myd“' p(uf + uf) .[Uzclf
T(t) T(t)

Lo, =p{fly & (39)-22 (3_‘2)] ok [J 622 -z 2P ar
U T(t)y O% oy

-pﬂ“r (yf;-zf,)dT+ pa, fﬂydt— p a, MZ dar
T(t) T(t) T(t)

+p (W, w, -~ w,) ﬂIxydT-p (wy w,—cb,),ﬂ]'xzd‘r
T(t) T(t)

+plwy, w, - w,) J‘ﬂ‘ya dT+p(ﬁ-w3)‘Mysz
T(%) T(t)

-p(w w ~ay) [If 2ar
Tt



“Li,=p [ (22 (3¢)-x 2 (a¢)]df+épm(z -x 2 )ar

-pﬂ:f(zf,-xf,)d‘l'-pa,‘m'xd1'+pa.;‘[]"fzd‘r-P(wx W, - ',).I'J'f:?df
T(t) T(t) T(t) T()

e wyw-a) [fxyar +p(a? -u?) [[Ixzar+ plw,w, - @) [[fyzar
T(t) T(t) T(t)

+ p(wz W, - ‘by) JTIZ’ dr
T(t)

=offJ [xa—(—‘P) ya (—‘P)]dn%pﬂ]‘(xa v*) a7
T dy i v 32

-oJIf (x1, - yiddr+pa, [[ xdt-p a [Ty dr+plw, w, - @) [[[x2dr
T(t) T(t) T(t) T (Y

+p (w? - Lu?)fffxyd1+ p(w, w,- Cb.)ﬂ:rx z d7- p (wy Wy - w:)ﬂ:[‘ya dr
T (%) T(t) T(t)

-plwyw, - @) [[[yzar
T(t)

Thus, with @i, @ , certain initial conditions and the geometry of the vessel
given, ¢ can presumably be determined. Consequently the motion of the liquid
in T(t) is known. It should be pointed out that the determination of ¢ involves
difficulties of a fundamental nature. A number of algorithms pertaining to the
non-linear oscillations of a liquid enclosed in partly filled prismatic cylinders
have been published but all of them are still very clumsy and, most important,
no one has thus far succeeded in proving their convergence. Moreover, the
very question of the existence of periodic solutions of non-linear systems still
remains open.
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STOKES' PROBLEM

Consider the classical problem of the motion of a heavy liquid enclosed in a
completely filled vessel which is itself in motion.

Denote by T the volume of the liquid cavity (the plane S is no longer a free
surface). Let the volume T be set in motion in any manner. Moreover, assume
that this motion is known to us, i.e., the instantaneous translational and angular
velocities of the vessel are known. The velocity potential of the absolute motion
of the liquid must satisfy

Ag=0
The boundary condition is

3, OO+ [y cos (n, z) - zcos (n, y)] + w, [z cos (n, x) - x cos (n, z)]
+w,; [xcos(n, y)-ycos(n, x)], PeZ +§. (2.34)

This condition may be satisfied by writing

$ = ux ¢f+uy ¢;"(-+uz¢f+wx(px*+wy <P:-’°+wz <P-z* )

where ¢ , ... are harmonic and satisfy the boundary conditions
3* 5 3
99 _ cos (n, x), 2% - cos (n, y), 9%i- cos (n, z), PeZ +8S,
dn dn dn
Lz (n, z) (n, y), PeT +8 2.35
-S-n =ycos \n, z)-zcos \(n, y/), + S, (2.39)
3oF
g-;fy =zcos (n, x)-xcos(n, z), PeL +8,
%p;‘ =xcos (n, y)-ycos (n, x), PeZ +8,
n
so that ¢¥ , ... depend solely on the geometry of T and not on its motion. Such is
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the classical problem of Stokes. ¢¥ , ... are sometimes called Stokes

potentials,

If for ¢oF , oF , 0¥, o , o¥, ¢ we substitute x, y, z, - zy + ¢of,
-xz+¢f, -xy+0F we get

O=T-w (yz-of)-w (xz-- o (xy-ob,

where ¢f , ... are harmonic and satisfy conditions

d3*
gﬁ" =2ycos(n, z), PeZ +8§,

%‘93*=2zcos(n, x), PeZ +8,
n

¢y

3n =2xcos(n,y), PeL +8S.

Note that the differential system

A =0, PeT,

B

Ey

it

©a

y cos (n, z), Pe T + 8

o

n

is equivalent to the variational problem for the functional

G¥ -*-%HI (Vg P dT—fo@ y cos (n, z)ds .
T S+Z

Similarly,

G} =%‘m‘ (vorP dr- 2 [J ¢ff z cos (n, x)ds,
T S+Z%

G¥ =%ﬂf(v<p;*)2 dr- 2 H(pfxcos (n, y)ds .
T S+Z

These expressions may be combined into a single formula

GF () =5[] (ve®2ar-2 [[o* M ds
T S+

(2.36)

(2.37)

(2.38)



vy

where
y cos (n, z) fori=1,

zcos (n, x) fori=2,

]

™
xcos (n,y) fori=3.
Thus the problem of determining Stokes' potentials is equivalent to finding

the extremum of functional (2.38). The method of Ritz may be used to solve this
variational problem,
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ENERGY FORMULATION

Consider the motion of the entire system (liquid plus solid). Denote by T
the total kinetic energy of the system. Thus

T=T1 + Ty,

T, =3 [[[ plal%r =3[ p [V +7|2ar, T, = III p V[ ar,
T(®) T(®)

where T) is the kinetic energy of the liquid in T (t) and T, is the kinetic energy of
the solid, i.e., vessel proper. T p* represent the volume and mass density of
the vessel proper,respectively. Let II; be the potential energy of the liquid in 7T (t),

ﬂ1=£ﬂ‘deT
T ()
f =-9v8Q

then, the equations of motion for the complete system may be written as

(BT) %gn-Fut+£ﬂpﬁdﬂWIUPde (2.39)
dt u T(t)
d aT P BT - aT 3 * - -
E?(_am)“" xB._‘z+ux————-al_1 ~Len +ﬂ]np (rxf)d’r +T‘f{{)p Tx f dTt

(T1+H1) Hp(Vn+vn)ds=—ﬂ p Vads ,
S(t)y+ Z (t) S(t) + Z(t)

p(x,y, &, t)=0, PeS(t),
Vv =0, PeT(t)
0, PeZ(t),

. cos (n, z), Pe S(t) ,
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in which [J[ pTdr, [[] p* f dT* are the resultant of body forces per unit mass
T(t) T¥

acting on the liquid in 7 (t) and on the solid respectively, and Fe., Lex; are

externally applied forces and moments.

Formulae (2.39:) and (2.392) are Kirchhoff's equations in vector form
(Lagrange's equations referred to moving coordinates).

Formula (2.39;) states that the rate of change of total energy of any portion
of the liquid (assumed incompressible) as it moves about is equal to the rate of
working of the pressures on the boundary. In deriving this expression it was

assumed that aa_ﬂ =0 . The unsteady pressure equation may be derived from
t

the formula. Moreover, condition (2.39;) is a corollary of (2.39,) for the

irrotational motion of a liquid enclosed in a fixed vessel.

Formulae (2.39,) and (2.39z) can be written as

(ST v x g = o+ [[forTars [otar - £ 3T ax 3T
T ¥

dt " ou T Tt dt "3d
d_ é_l) & é_l.;." PL:T_, + ¥(pxT)dr*+ FxI)dr
™ (BLD + xaa’ uxaﬁ oxt ‘,’_J‘.J;.[P J{{)P(
4311y _ 54205 _ g 52T
i 3a) - 9x3g X

Now, if the liquid had been absent (T1 = 0), the right side of these equations would
have contained only Fext + ﬂff dT* and Lexy + fﬂ p*(T¥x ) dT*. The action of the

T I+ T*
liquid pressures must therefore be represented by the remaining terms on the right.
Thus the action of the liquid is represented by the force and moment

_F1=Q_(_5_T_1)+65x é_ll-fﬂpfd‘r,
dt o i T(t)

F._d aTJ, 7 aTz = aTz_ f
-1 = ot )+ W x =2+ U x = prx)dl,
1 lt(a-) a-) xa_ \.U:r (

T(t)
which can be verified from formulae (2.8). To be sure

—3—?—1=Iﬂ(ﬁ+axr+v)pdfr,
ot
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a—%:ﬂ‘f(rxu+rx(® xT) + T x¥) pdr,

T(t)
LBx-a—':I_-‘1= (@xa+@ x(BxF)+& x¥)pdr,
311 T (1)
LBxa_T___=J‘ﬂ‘[wx(rxu)—(wr)(@ f)+(5x(f‘x"7)]PdT,
dWw T(t)
%(g—%l)=£{{)[ﬁ+éxr+@x6+g—‘z— + (99 vlar, [ (pd’r)—O]
—J‘J‘I(u+w xr+wxv)pdT+‘fﬁBQ_)dT+Hvat cos (n, z) ds,
T(t) T(t) S(t)
PE%—‘—:;+(vv)v]=a(§l;’)+v(pv;v),
%€+V(pv)=o,
Il vov:9)ar=[ pvvads=[]p 7L cos(n, z)ds,
T(t) S(t)+ E(t) S(t)
d (aTl) J‘I‘r[\'rxﬁ+f‘xﬁ+§x(¢5‘xf‘)+i‘x(¢)xf')+f'x(5-‘~x§'7)]pd‘r
dt 3w ()
+ I (Fx2@D7ar 4 I p(x9) e, cos (n, z) ds,
T(Y) ot S()

and therefore

Ay, xS 52D arip o @ xv)ar + [l p @ xr)ar

at T(t) T(t) T(t)

+‘[‘_ﬂ. p @ x (@ x¥)lar+ ﬂI P ﬁdT+H pv £, cos (n, z)ds
T(Y) T (t) S(t)

=5, +[[[pfar,

T(t)

4 (M)+edx 2T +axdLi- Iﬁp[rxi&&_]d7+ 2 [[fols® 9)-9(& £)] ar
& ol o °% 1y ()
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+[fTo@s) Ex@ar+ [[owE -5 @8)dr

T(t) T(t)
+[[fo(rxa)dar+ [[p(Fx¥) L, cos (n, z)ds
T() S(t)
=L+ [Tp(exDar
T(t)

as adduced.

If the motion of the liquid is irrotational when measured in inertial space,
then

F=Vp-0xF,
=VQ - @ XxF-W Vyz-w,Vxz-w,xy,
using (2.23) and formulae (2.39) become

ax {p [ ar + [[f p*ar*}- (B + o) {p [[Tx a7+ [ o*x ar*} (2.40)
T(t) ™* T(t) T*

+ (wy wy - @) {pﬂIy dr+ ‘m‘ o*y dT*} + (w, w, + @,) {pm zdT+ .ﬂTP* z dr¥}

T(t) ™ T(t) T*
-2d,p[[[zar-p [J £ dr- j'ﬂ'p*f, ar*+ p ﬂ'a _SP)d‘r
T (t) T(t) T™* T(t) O% Ot

+%Pﬂf%—vad7 =Fout,

Tty °F
ay o [ ar+ [T o* ar*}+ @, wy + &) {p [[[x dr+ j]'fp*x ar*}

T(t) T* T(t)
-2 + @) {p My dr + ﬂfp*y dr*} + @, w, - &) {p ﬂ‘f z dT + \m'p*z dr*}

T(t) T* T(t) T*
-2w,p [T xar-p [f ¢, ar- fﬁp*f,d‘r* soflT & (_‘P) dr
T(t) T(t) ity O ot

+% P_DT avde‘Fut.,

T(4)°Y
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a, (p [I] ar + [If p* ar*} + (@ w, - &) {p [[[ x ar+ [[] p*x ar*}

T(%) T¥* T (t) TH*
+(wyw, + @) p [y ar+ [[fo*y ar*}- (R + «®) (o[ z ar + [[] p* z ar=)
T(t) T* T (1) T*
~2ip[Jfyar-p [, ar- [[Jo*t, ar*+p ] & (29) ar
T (t) T(t) T* T(t) 0% Ot
+% Pﬂ]‘ %_vz ar =Fext'.z
T
a,ip .H]' y dr +_£U' p*y dr¥*}-a, {p J:LT z dT + ‘]Ir p*z dT*}
T(b) T(t) T*
+ (wy w, - L'uy){pﬂ'fxy dT+JIf P¥x y dT*} - (W wy+@,) {pﬂ:rx z dT + Mp*x z dT¥
T(t) T* T(t) T*
+ (wy w, + &) {p ﬂr ¥y 4T + fﬂp*yzd‘r*} (w? - «B) {p ﬂIy z dT + ﬂ:rp y z dT¥%
T(t) T* T (t)
- (w, w, - w) {p Iﬂl z? dT + ﬂ‘fp*zz drd + 2 w, pfﬂ‘x z dT - 2 W, _UIyz dar
T(t) T T(t) T(t)
- pfﬂ.(y £, - z f,) dT - Igp*(y f, - z f,) dT¥+ p‘fﬂ‘[ya_(ip)- Z -g— (%‘P)]d‘r
T(t) T % T(t) dz ot y t
i dv? ov? -
+3 pTIg (v 37 =% 33 )47 = Lux,
-a, {p HI xdr+ m p*x dr*}+ a, {p [[[z ar+ ‘fﬂp*z d7*}
T(t) T(t)
- (wew,-w)ip [ ar+ [[Jo* @dar¥l-(wow, + &) {p [ xyar+ [[[o*x y ar)
T (t) T* T (t) T*
+ (B - uﬁ){pj‘ﬂ X z dT+ ‘H“rp*x z dT%}+ (w, w, - @) {p H‘ryzd7+ J]Tp*y z d7*}
T (t) T#* T(t) T*
+ (W W, + w,){pﬂ‘f z° d1’+_m‘p*z2d‘r*}+ 2 Lb,p_ﬂ]' Xydr-2w, p ﬂ‘f z° dr
T(t) T* T (t) T (t)
-pfi(zti-xg)ar - [[[ p*(z £ - xt)am*+ p [ 2 _(é_.‘f:’) (%‘9)] dr
T(t) T* T(t) t
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+2o[ff (za_va—x.g_vz) dT = Lext, ,
Tty °% z

ay (o [I] xar+ [[T o*x ar*}- a, {p [ y ar + [[[ p*y ar*]

T(t) T# T (t) T*

+ (we wy + @) {p [[] 2 d'r+j‘ﬂ p*x2 dr*} + (€ - o) {p [[[xy ar+ [[] o¥x y ar #}
T (t) T T (t) T*

+(wyw, - @) lp [T xzar+ [[[o*x 2 am#) - (w, w, - &) (p[[[ v a7+ [[] p* ¥ ar*}
T(®) T O

(i) (o yzars T oryzard-zaplfPars2dy o [yzar
T(t) T* T(t) T(t)

-p [T (xty-yt)ar- [[[o*(xf, - y £2) ar *+ pj‘ﬂ[x%— (%‘f) - y%;{(gf)] ar

T(t) T#* T (t) y
%P‘”‘I(X a—Vﬁ-y 3v?) gr = Lext, ,
dy ox

T(t)

g+g_t9_Lb,yz—ébyxz—da‘zxy+5f'+ﬂ+%v2—%(£5xf‘)2 = C(t), Pe T(t),

g—(t-p— S yzZ-@ xz-0, xy+ar+Q+5v-2@xFP = 0, PeS(t), z=0,
Ap = 0 PeT(t)
2 [wy ycos (n, z) +wy zcos (n, x)+w, xcos (n, y)] , Pe () ,
%‘i= 2 [wy ycos n, z) + wy, zcos (0, x)+w, xcos (n, y) ]+ &, cos (n, z),

Pe §(t) .
Thus, with the external forces and moments, certain initial conditions and

the geometry of the vessel given, the motion of the system can, in principle,
be determined from (2.40).
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3/ PLANAR EQUATIONS FOR THE MOTION OF A LIQUID PROPELLANT
LAUNCH VEHICLE



PLANAR EQUATIONS FOR THE MOTION OF
A LIQUID PROPELLANT LAUNCH VEHICLE

Consider the planar motion of the launch vehicle illustrated in Figure 2. The
vehicle consists of an engine, a main body which is assumed to be rigid and a rigid
tank partly filled with a frictionless liquid. For simplicity, the tank is assumed to
be a prismatic cylinder, Figure 3.

To describe the motion of the system take three cartesian frames of reference
o' x'y’ z’ fixed relatively to the vehicle at a distance 1 below the ""capped" free
surface, o x y z fixed relatively to the container and o. x, y. z. fixed relatively to
the swivelling engine. Reference o x y z is oriented in such a manner that o z is
measured positively along the outward directed normal to the undisturbed free
surface. Thus the free surface, denoted by S(t), coincides with plane x o y (the
plane z = 0) when the vehicle and liquid are at rest.

Let
z=8(x,y,t)
be the equation of S(t) when it is displaced. Denote by Z (t) = Zy (t) + Zz (t) the
wetted surface of the vessel, and by T (t) the variable volume enclosed by S(t) and
Z(t). LetZ, T and S represent the values of Z (t), T(t) and S(t) in the undisturbed
position. In addition let C be the boundary curve of I, (t). All surfacesare

presumed to be piecewise smooth.

Coordinate systems o x y z and o, X. Y. Z. are related to o' x’ y' z' as follows:

z' =z2+1 , z'=<-11-(zecos B +yosinB) ,
yl =y ’ yl=ye CcOos B— Z.,SinB .

’ ’

X =x , X' =X,

Suppose that at time t the vehicle is coincident with inertial space and that it
is moving relatively to inertial space with motion described by an observer in
inertial space as a velocity u of 0’ and an angular velocity @ . Then the position




Figure 2. Launch vehicle experiencing planar motion.
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vector ¥’ of a particular point P on the vehicle at time t is the same for an observer
moving with the vehicle as it is for an observer in inertial space,

The point P, if rigidly attached to the vehicle, has the velocity
vV = {0,(u,' -z'8), (u,’+y'é)} .

Denote by g (P, t), ¥ (P, t) the velocities of the liquid particle Pe T (t) at time t
as estimated by observers in inertial space and o x y z respectively. Then

q = {o, (u,’— (z+1)é s (u,’+yé)}+v ,
in which @, v are referred to moving reference o xy z.
The velocity of a generic mass point on the engine is, referring to Figure 2,
V=9, lu+ (8- B) (2o cos B +yesin B)+ 11 61, [uz'—(é - B)(ze sin B- y. cos B)1}.

The total kinetic energy of the vehicle is therefore

T =Tmain body * Teng;ine + Tliquid ,

where
T main body = % (v’ + u}’ ) 'Jq_ﬂ‘dm + %92 _JIF(yIz +2'3 dm + é{uz' M.y' dm

T* T 1'*

- uy’ ﬂ‘f z' dm },
T ¥

Tengine =3 B+ [[fam +56 [[[[y2+ (L + 2P dm (3.1

TQ TQ

+6 0w [l ye am+ uyr [f (1 +20) dm 3+ 3 87 (32 + 22)dm

Te Te Te

_ BG,JH (y2 +22) dm - ﬁ{(uy’+11 é)cos B - u,’sin B] ﬁ‘\rze dm
Te

Te

+ [y + 1y 6) sin B + u,’ cos B I ye am }+ 0 {{fay’+1, 8) (cos B-1)
Te

~uysin 81 [[[zo dm + [(u,’+11é)sin B+u,’ (cos B- 1)1 [[I yo dm},

Te Te

3-5



=% (3 + ;')J‘ﬂ'p ar+% @ [[J (¥ +(z+1R Jpdr +% v par

11qu1d
T(t) T(t) T(t)

+ .G{u,"m‘ypd'r— uy’ ﬂT(l+ z)pd1'+u,"m'v,pd1'

T(t) T(t) T (t)
+ JJ v PdT+éfff[yvz- (z +1) vylpdr .
T(t) T(t)

Assume the liquid to be homogeneous and incompressible throughout the
motion. Neglect interfacial tension forces and capillary contact effects between
liquid and tank walls. Moreover, assume that the liquid is not draining from the
tank. Then, with the absolute velocity of liquid particles irrotational, we have

a5 -0 S =Fexy o Jgars Joy am + gyam,

duy / T (t) T* T
4 (3T ), 63T _p,. pmsz'df+ﬁfs='dm+msz , @.2)
dt Buz auyl z T(t)
d aT ,aT - ’_ z
(ae)+ T au,/—Lutx'+9m[3’g= (1+2) g Jar
T(t)
+ﬂ_f(y'g,'—z'gy')+ﬂf[y,cos B- 2o sin B) g, /
T* Te
+ (13 + 2z, cos B+ y, sin B) gy’ 1dm
%t_(_g% _——_—.ﬂ]‘(gz sin B- gy’ cos B) z, dm - _m‘(g, cos B+ gy’ sin B) y. dm
Te Te
+Qﬁv
§+%f'éy(1+z)+ a,y+a(z+1)+ 0 +% P-4 0 [P+ (z+1F1=Crt), PeT(ty ,
_g_%p By(l+z)rayy+a,(z+1)+Q+%2vP-% ly°+ (z+1PF1=0, PeS(t), z=2C,

T=Veo+(0,0, -2y 8), PeT(t),

A@ =0, PeT(t)



28y cos (n, z), Pe Tu(t), Tz (t) ,
20_
en 20ycos (n, z)+ L, cos (n, z), PeS(t) ,

in which
g=(0, g, g')

is the vector of body forces per unit mass, and
g=-9Q .

Qﬁ is the generalized force which, in general, is associated with the spring
moment per unit angle of the hinge when locked, with the damping moment of the
hinge, with the engine actuator moment, and with the engine actuator position
required by the autopilot.

Formulae (3.2,2, a) express the dynamic equilibrium of the complete system.
Formula (3.2,) is the Euler-Lagrange equation which describes the motion of the
engine. Formula (3.25) is the unsteady pressure equation which is obtained
from a quadrature of the Euler-Lagrange equation for motion of the liquid subject
to the above assumptions. Formula (3.2g) expresses the constancy of pressure
at the free surface of the liquid. Formula (38.2,) is a corollary of the assumption

of absolute irrotational motion.
Using (3.1, 2), we get

’{‘m‘ dm+.ﬂ‘j‘ dm+pmd‘r} Gz{j'ﬂ‘y dm+jﬁyedm+pfﬂ‘yd‘r} (3.3)

Te T(t) Te T(t)
-B{ﬂTz dm + [[[ (zo +1) dm +p [[[(z+ D dr]- J"Ifgy'dm p JIJ & dm
Te T(t) T(t)
- ey’ am + p_ﬂIa (—‘P) ar+d p ] 2 dr+ [6(cosB+1)-2PB @sinp
ot a
Te T(t) T(t)

+(é2+é2)sinﬁ—écosﬁ]f_ﬂ‘z.dm+[ésinB+ZBécosﬁ—(éz+Ba) cos B
Te

®_BoinB) [Jyodam+26L ([ dm = Fur .,
Te Te

a,:{m dm+j‘ﬂ\ dm +pj‘ﬂ‘d1’}- 92 {mz' dm+‘”]'(z.+l1) dm +p_”:r (1+ 2z)dr}

™ T. T(t) ™ Te T



-

+9{J]J'y dm+m'y. dm +p [[fydr}- ”Ig, dm-p [[Tgrar- [ g, ‘dm

T(t) T(t) Te

-Zepfﬂ‘yd‘r+pﬂ'fa (ﬁ)d‘r+ipﬂ? 3v° 4r + [OsinB +2 B 6 cos B
T(t) T(t) T °% _

- (62 + B cosB-ez-BsinB]ﬂI ze dm + (0 (cos B-1) -2 8 6 sin B
Te

+(é3+)§3)sinﬁ-écosB]fﬂy. dm +21 6° I dm = Foxt ,
Te Te

a,/{ﬂIy dm + [[[yodm +p [[[yar}-a, {Jfz’ dm +ﬂ]‘ L+ 2z,) dm

Te T(t) ™ Te

sp[[f+z)ard+ O{ﬂ'f (y*+2?) dm +Hf[yf (13 + 24)?] dm

T(t) Te
+pJIf y?+ (1+2)]ar}- j‘” y'gd-2"g)ar-p [[[ [y g/~ (1+2)gy/lar

T(t) T(t)
- Il ((yocos B~ zs sin B) g;/+ (1 + 2o cos B +ye 8in B) gy’ ] dm’

Te
—2pefﬂfd7+pﬂf[y—(—9) (z+1)a (—9)]d1'+'b pﬂT[y

() T(t) ity °%

-(z+1) gla]d‘r —ﬁlm.(yf +22) dm + {a,’ (cos B+1)-a,’sin B
y
Te

+ll[zé(cosB—1)-2;éésinﬁ+B.zsin3-écos13]}‘m‘ z, dm

Te
+{a,/sinB+a,’(cos B ~1) +1; (28sinB +2B 6 cos B - B2cos B

"ESinB]} I‘J]n Ve dm +2a,’ 1 ﬂ.,rdm = Lext‘/ )
Te Te

BIII (y2 +23) dm-é,”f(yf+zf) dm+[a,'sin;3-ay’cosﬁ-h§ cos B

Te Te

+119'asinﬁjfﬂz. dm - [a,.’sinB+a,'cos/3+11§sinﬁ+119'3cos ﬁ]f‘”‘y. dm

Te Te
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- J‘,ﬂ‘ (gz’ sin B - g,/ cos B) 2, dm + J‘ﬂ‘ (g;’ cos B + g, sin B) y. dm = QB ,
Te Te

B, g—‘te By (l+2)+ay yrar(z+D+2 v +8-%020y+ (1+2)2) =C(t), PeT(t),

p
%‘f—éy(1+z)+a,'y+a,l(l+z)+% v2+9—§é2[y2+ @+zPl=0, PeS(t), z=C ,

Veo+(0,0, -2y6), PeT(t) ,

<l
Il

Ap = 0, PeT(t) ,

oS¢ . 0, PeZa(t) ,

dn
00 _ 20 _ 36y, PeZat), z=-h ,
dn dz
%‘5 = (Zéy+§t) cos (n, z), Pe S(t)
é = (0, gy', gzl) L
g - -vQ,
ayl = {lyl - e.uzl . azl =i].z,+6. uyl .

We now make the following simplifications and identifications:
(1) The specific body force are independent of position,
g = const;

(2) Origin of reference system o' x'y’z’is at center of mass of vehicle when
engine is "locked-out" and liquid "frozen" solid,

fﬂyldm+fﬂye am+p [[fydr = o,
T* Te T
Jfz am+ [[f(h +2z)dm+p [JfQ+2)dr = o0 ;
T™* Te T
(3) Engine is symmetrical about its line of centers,

.ﬂIyedm=0;
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(4) Origin of coordinate system oxyz is such that

I Yd1'=.ﬂ'dxdy.ffh ydz=h[Jydxdy=o0,
T 8 )

the tank is symmetrical about longitudinal axis of vehicle;
(5) Total moment of inertia of system about axis o’ x’is

=b . 1
= ; /
Iorx! = lo’z’ +I0's’ +10%" ,

b
Io’;’ =ﬂ:f(y'a+ z'?) dm ,
T*

To’s! =l "+ (1+2P)ar;
T

(6) Total mass of system is

M=Mp+M,+M, ,

M.'b =ﬁj dm 5
1-*

L, =p [ff ar ;

(7) Moment of inertia of engine about axis o, X, is

Io:y, =[f (2 +2)dm ;
Te

(8) First moment of mass of engine about axis 0.y, is

So:,. =m Z,dm ;
Te
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(9) Second moment of mass of liquid about axis oz is

=p[ffPar;
T

(10) Various volume integrals associated with liquid are evaluated as

p[far = p [far+p [J Caxay,
S

T(t) T

PmydT Pmydﬂpﬂycdxdy,

T(t) T
pﬂT(l+z) dr= pf_ﬂ'(l+z)d1'+pﬂ'(ca/2+1C)dxdy,
T(t)
pﬁr[y +(1+2)%]dr= pﬂ',f[yz+(1+z)2]d1'+pﬂ'[12+y2)C+1Ca+C/3] dx dy;
T(t)

(11) Potential Qis
Q= -gy-g/(z+1) .

With these simplifications and definitions, formulae (3.3) may be written as
follows:

Component of force equation along axis o'y’

M (ay’-g,")+play' - gy') [[Caxdy-p 6 [JQ &+ ¥2)dxdy-p 62 [y ¢ ax dy
S S S

+pﬁ]‘ 0 (_‘P)d7+%pI‘HBV d‘r+[9(cosﬁ+1) 2ﬁ9s1nB (3.4)
T(t) T(t) oy

+ (62 + B®)sin B- B cos Blsoy, +2L 6 M, = Foxt, /
Component of force equation along axis o'z’

M (a,'-g:.*) +pla,’ - g’) [[Cdxdy- p 6 [[y Lax dy- p 6@ [T (1 £+ %/2) ax ay
s S s

+pﬁI (-—-‘P)d1'+§pﬂ]' a‘z' dr - L651nB+2BOcosB (38.5)
T(t) T(t)
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- (6° +32) cos B - 6 —BsinB]S(',:,. +21, M, 9a = Fa
Moment equation about axis o’ x’

(To/x/-21a) 0 +p(a, -g) [[yCaxdy-p(a; - g) I (12+8%2)dx dy

S S
. 3 (3Q)_ 3 2

+p8 gt(lz- YZ)C+C2+Ca/3]dXdy+pT{{{[ya—z'(?‘f) “”)a—y ‘?‘f‘” ar

+ip [y %v:_ (1+ Z)-g-zz] dr- 1o, B+ {(ay’ - gy7) (cos B+1) (3.6)

T(t)
- (a,'- g:)sin B+ 1, [ 2 8(cos B-1)-2f 0sin B+ B sin B
- B cos B8] } Sdy, +2 1 (ay’ - gy ) M, = Lioxt, ¢
Engine equation
Io%, (B-8)+ [(a, - g, sin B- (ay’ - gy") cos B-1, 6 cos B (3.7)
+1, €sin 8188, = Qg
Constancy of pressure at free surface

%%- 6 y(1+0+(ay-gy)y+ @ -g)1+8)+EV° (3.8)

-2 [P+ (1+0)3]16 =0, z=¢

Kinematics of liquid

v =ve+(0,0, -26y), PeT(t) (8.9)
Ao = 0, PeT(t)
20 - 0, Pe Ti(t)
dn
/¢ _ a_‘P=29'y, Pe {(t), z=-h,
2n dz
Z_‘P = (20y+2) cos (n, z), PeS) .
n

The solution to the Neumann problem (3. 9), subject to the restriction
C, dx dy = 0, may be taken in the form of a series
S

e(x,y,z,t)= ? (o4 (t) cosh ki (z + h) + %(t) sinh ky z)@y (X, y)+ co(t) (3.10)
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This function is harmonic as indicated by (3.9;), and satisfies (3. 9,) if the
infinitely many values K5 (i =1, 2, ...) are the values of k® ( eigenvalues) for
which the two-dimensional scalar Helmholtz equation

Ao+X¢p =0, Pe S, (3.11)

has a non-zero solution satisfying

2P .9, Pe L, (or C) . (3.12)
dn
Functions ¢; (i =1, 2, ...) are the corresponding solutions (eigenfunctions)

of (3.11).

We point out, without proof, several important properties of the system of
functions ¢; and the numbers K5 :

(1) Of the infinite number of numbers k5, all are real and positive;
(2) The set of functions ¢; is orthogonal

0,i #j
(@, @)= [[o oaxdy = . : (3.13)
S led® , i=j

and can be normalized;

(3) Any function. g(x, y) which has continuous second-order derivatives in
and on the boundary of S and which is orthogonal to & constant:

(, 1) = [[px y)dxdy = o,

and which satisfies the boundary conditions, may be expressed as a
uniformly convergent series of eigen functions

px, y) = % c1 @ (x, y); (3.14)

(4) If function u which is continuously twice-differentiable satisfies the
condition (3.12), then the series (3.14)not only converges uniformly to
i, but the series obtained from it by termwise differentiation also
converges in the mean to the corresponding derivative of i ;

(5) In addition to the condition for orthogonality, written above, the
following equations hold:
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0, i #j
ﬂ' Vo Vo, dxdy = . (3.15)
kK lell®, 1=}
We are now in a position to expand 2 y 6and ¢ (x, Y, t) as series of the form

26y =26 {% ) @ (%, y)+ Mo ()}, (3.16)

Z(x, y,t) = % £ () @ (x, y)+ ot .

Such expansions are possible, since for a fixed value of t functions 2 8 (y - ‘no)
and £ (x, y, t) - £€o (t) are developable in series of the form (3.14). The
coefficients of these series depend, in general, ont. Choosing 7o and £, so that
y - No and - £, are orthogonal to a constant (unity), we get

m = L@ | (3.17)
Iyl
Mo (t) = (lA:—1)= 0, (y,1)=0,
and
gy = L@ (3.18)
el 2
Eo (t) = (LX_C.) ,

respectively, using the condition for orthogonality (3.13). Here A is the area of
the cross section of the cylinder. Now since

a—§—=0 Pe C,

dn ’

the series obtained from (3.162) by termwise differentiation converges in the
mean to the corresponding derivative of {. Note that this implies a 90° contact
angle. For contact angles other than this such an expansion as (3.163) is still
possible with, of course, certain modifications.

For (3.5) to satisfy the boundary condition (3.94) it is necessary that

Y(t) = 26 (y, @) , (3.19)
kg ||©,]|® coshksh
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To satisfy the boundary condition (3. 9;) it is necessary for

P {k, ¢ sinhky; (£ +h) -V VE coshky (£ +h)} a; ()
1

+ %{k; @ coshki L -V, YV sinhk; L} N (t)=+26y+C,

71 (t) kg cosh ki h ¢ + ;t

~ M8

However

¢1=—%-? A¢1=-%V(V4’t) ,

so that this expression can be written, on application of a known vector identity,
in the form

T oai)v {&'hkk‘—(;—"L—h)V ©s}+ 5wy v (eeshkibocoshiyh g3 (3
1 1 1

ki

- -r, = -%é,(t)(pi—éo(t) :

using (3.18). Multiplying both sides of this equality by ¢, and integrating over S,
we get

_ o2 £y = E ooyt If e v{ﬂkE.L(_g_iﬂ) Ve, ldxdy
1 S 3

+ T v (b ﬁ‘Pi v {coshk, £ -coshk, h Vo ldxdy
1 S k,
but

o, v {Sithk, (L+1) v }-v [ sithk (L+h) g4 )
! k,

_sinhk, (C+h)
Kk

V‘PIV‘PJ ’

@, v {cosh kj_kC - coshk,; h v @, 1= v{q cosh ktg -coshk;h qo_.'}
1 1

_coshk,{ -coshk; h
ky

v(pl v(pj ’
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and moreover

.J‘.I‘V{‘PLSinhl;’J(C+h)V<PJ}dxdy I%smhkl:(C+h) ’dL o,
S C J

HV{q) coshk,kl;-coshk,h v} axdy =0 ,
S J

in accordance with the divergence theorem and boundary condition (3.12).
Therefore, it follows

£ =°z; Ciyoy + 26 py (3.21)
where
4 Tor ¥ bk (Le8) 9o v axay 3.22)
® (y, o) coshky§ - coshk;h
= b v v dx d
o I <91He 1 ky @ “coshkyh I ky SIS d

S

If we integrate both sides of (3.20) over S we obtain the constraint expressing the
constancy of volume. To be sure

sinh kg (£ +h) a‘Pt

dL =0 ,
k1 an

vV} ax dy =,J‘

‘ﬂ- V{Sinhllz: (C+h)
S C

H v{coshk1 { -coshki h Vg } dxdy =J‘ coshk; £-coshks h 3¢, dL =0,

ky C ki on
and
E&fl o axdy +8o ] axdy =a o,
S S
so that
Afo=0
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But the volume is given by

T(t)=f_r dx dy ..r..chdz=hﬂ‘ dxdy+ﬂl§ dxdy =To + A o,
S S S

and
T(t)=0=A &,
as adduced. 3

Substituting the expansions for ¢ and £ in expression (3. 8), multiplying the
resulting equation by ¢, and integrating over S, we get, after considerable
manipulation and rearranging indices,

(a.’ - g )@l &y + %;3 dy [ @, ¢, cosh k,(Z+ h) dx dy + (a,’ - g, Ny, @) (3.23)
S

+32 By oy [Jou [V, Yo, cosh k, (L + h) cosh ky (£+ h) + k, ki @, @, sinh k, (+h) -
11

S
© (y,(pj)
sinh k; (Z+ h)]dx dy + {281 k, l@, ] cosh k, h _E‘(pg(pJ sinh k; £ dx dy
® - o @ (y: ‘pj)
-215.1 Tyooaxay - & (v, 0)}0+2 (% L Z ok, J¢, cosh ky h

S

ﬂltpi [V, Vo sinh ky € cosh ki (£ + h)+ ky ki @ ¢ cosn ky £ sinh k, (£ + h)]dx dy
S

(y, 1)
@ ki |[l¢n)® cosh ki h JJou 199, Vo, cosh ky (Z+ h) sinh ki £
' S

+ %

w48
~M8

+ ky k; @, @ sinh k; ({+ h) cosh k; £ 1dx dy - zz‘iozJ k [Jyeio, -
S

sinh ky (L+h) dx dy} 6 - % 6° {[[ @ [(1+ £ - 3 y*ldx dy
S

® o 7 (Y!(PJ)(Y:‘pl) . .
-4 z1 21' ky ky [@1|?]| ¢2l°cosh ky h cosh k, h gf ¢ [Vo, Vo sinh ky { sinh k; L

+ ky ki ¢y ¢y cosh kg £ cosh k, £ Jdx dy + 8 b (ya, 2 ﬂ‘Pt ¢, coshk, L dxdy}=0
1ll¢,l2cosh ky h ‘g

3See notes.
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Likewise, substituting the expansions for ¢ and { in expression (3.8) and
integrating the resulting equation over S, we obtain

A {ao+ (az' - g:' N1+ &)} +.% a H(p; cosh kg (£ + h) dx dy (3.24)
S

+ ¥ % j‘:;)oa o, ] [V V@, cosh ky (£+ h)cosh ky (£+ h)+ ks k, ¢ @, sinh ke (£ + ) -
3

2 (y9(pl)
sinh k, (C+h) dx dy + {222 TalPoosh ki chp, sinhk; ¢ dxdy-1A
- GZOQ (y %)51}5+2{%§§a ly, @) ‘U[V@V(p cosh k, (£+ h)sinh k ¢
1 11 kille]®cosh ks h S ) 3

o o (y ‘P)
ke k inh ky ({+ h) cosh k; L]dxdy +#Z T o 7o
+ ky J<pi (pd sin J(E )COS 1C] y % 1? 1 kJ ”(,DJ”zCOSh kJ h

[ (91 Vo, cosh ky (£+ h)sinh k, £ + ks k, @1 ¢y sinh ky (£ + h) cosh k, £ Jdx dy
S

- z?m ke [['y o1 sinh ky (£+ 1) ax dy} 6 - #{ [T (1 + £f- 3 y*1dx dy
5 5

® ® (Y:‘PL)(Y:‘PJ)
- Ty v
AT E Gk @ilPleyI® cosh ik, b cosh k, 1@:[ P17 sinh ks Tsinh b, €

+ k¢ ky ©1 ¢y cosh ky; £ cosh k; Cldxdy + 8% (y,(pg)

1 le[Pcosh ks h Jg“" cosh ky L dx dy}6° = 0.

Introducing the expansion for ¢ into (3.4, 5, 6) gives

M (a,’ - gy/)+ play’ - g [JCdxdy - p 6{[J(1¢+¢92) dx dy (3.25)
S S

R (y, &1) cosh ks £~ cosh ki h .
v v dx dvl-
+2§k1"<P1Hzcoshkih£y L K, ¢y ) dx dy} Peagycdxdy

- pzl.‘f 0 ﬂ‘yv [—s—i%d-gil) Ve ]dx dy+%9mq:—;’2d7+ [0 (cos B+ 1)
S T(t)

+ (8- BP sin B - Beos B Sy, * 2 L 6 M, = Fext,’

M (a,/- g.)+pla,-g)[JCaxdy - p6{ [y Cax dy (3.26)
S S
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2§ (Y, ‘pl)
““7 ki |ll¢u|?cosh kg h

[T (sinh k, £ + sinh ky h) ¢y dx dy - p & [J (1 £+ £3/2) ax dy
S S

+pEa1ﬂ[coshk1(C+h)—1](,01dxdy+§pﬂ]'——z dr- (6 - B)sin B
T(t)

- (é-B.)zCOSB-éz]so:y°+211Moé2=Feztz':

and

(o’ - 2L +p [J[(1P- y?) L+ €2+ £Y3]dxdy + 2 p T (v, @) (3.27)

1 kyll¢y||® cosh ke h

[y ta+ c)vt%“iktﬁ vy 1+ k(1 - h)¢y coshky h + 2 (sinh ky €
$

+ sinh ky h) ¢} dx dy} 6 + p(a,’- gz’)ﬂy L dx dy - p(a,’- g,*) ﬂ' (AC+ £3/2) dx dy
S S

ﬂg‘_@.ﬂ) V@ l+ 2 [cosh ky (€+ h) - 1], Jdx dy

]

+p§o'aﬂy{(1+§)V[
1 s

+ & Pﬂf[y—g—‘z’a— Q+2) %iz]d‘r— Io%x, B + {(ay’- gy*) (cos B+ 1)

-(a,-g,/)sinB+1, (28 (cos B-1) -2586 sin B+ B° sin B - B cos 3]}302,e

+21 (ay/ - gy) M, = Lex_,

3

respectively.

Formulae (3.7, 91, 10, 19, 21, 22, 23, 24, 25, 26, 27) together with the
appropriate control system, flight path data and aerodynamic data are sufficient
to describe the motion of the system. The dependent variables occurring in these
expressions are &, e, uy, u; and B. Note that the body rates u,, u, ,8 are not
generalized coordinates; therefore, to determine the true orientation of the vehicle,
it is necessary to express these rates in terms of three independent coordinates
such as Euler angles. However, stability analyses of closed loop vehicle attitude
control systems treat vehicle rigid body motions as a summation of perturbations
from a reference motion and motions in which vehicle body axes remain coincident
with reference axes. Moreover, the perturbation quantities are presumed to be
infinitesimals so that products of infinitesimals and their derivatives can be
neglected. In this case the perturbation equations, when referred to vehicle fixed
axes, can be integrated to yield the orientation of the perturbed state with respect
to the reference state.
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The perturbation equations of motion are obtained by taking the vectorial
difference between the perturbed equations of motion and reference equations
of motion. The resulting expressions are equated to the appropriate perturbed
external forces and control system forces.
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PERTURBATION EQUATIONS FOR THE PLANAR MOTION OF A
LIQUID PROPELLANT LAUNCH VEHICLE

For sirxiplicity suppose the vehicle to be moving in the direction of constant
acceleration

(0, 0, 2,9 = (0, 0, a,) ,
under the action of the force field

(Os 0’ gzl) = (Ov 0’ 'gr) ’
the only external force being the thrust T directed along the longitudinal axis of the
missile (Fig. 4). The free surface of the liquid forms a plane perpendicular to
4./, i.e., £ = 0, and the engine is aligned with the longitudinal axis of the vehicle
(B =0). We shall call this the reference state.

A small disturbance from the reference state is effected by letting
a,’ = (ay’), + ba,’ = a, sin O + ba,’ , 4.1

a,’ = (a,"), + 6a,’ = a, cos 6 + da,’ ,

g/ =-g sinf,

it

g2/ —-gr COS 8 ’

in formulae (3.7, 23, 24, 25, 26, 27), and considering 6a,/, 6a,’, 8, B, C, .
initially infinitesimal so that when product terms are neglected the resulting
equations become linear. These equations are the perturbed equations of motion.

To obtain the perturbation equations, project the reference state equation of
motion onto the instantaneous position of the body axes and subtract them from the
perturbed equations of motion. Thus, we get perturbation force equation along

N i /
axis o' y

M 63‘)’/+ p? (y’ (pi) gi +2 (SOZyo +1h Me) 0 - SO:yo B = GF‘xtyI ’ (4.2)
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PERTURBED REFERENCE

= Y

\B ' T

Figure 4. Yaw plane perturbation model for vehicle.
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Perturbation force equation along axis o’ z’

M 83’ = Fu / » (4.3)

Perturbation moment equation about axis o’ x’

(lon/- 414 + 8pReoshkih-1(y, @F 15, 22 (coshkih-1) 000

1 kisinhk h llof? 1 kysinhksh
+plar+ gJ? (7, @) &+ 2 (Soly, + 1 M,) 88y’ = (I, + 11 Sofy) B (4.4)

= 6Loztx’ ’

Perturbation engine equation

Ios, B- (Iol, + 11 So%,) 6 - Soy, 88y’ + (a, + g:)So'y, B=Q4 , (4.5)

Constancy of pressure at liquid free surface

Pledl® B+ pllal® (ar +g) &+ p[2(coshkih-D_17(y, )6 (a.6)
ks tanh ki h ks sinh ks h

+p(y, @) bay,’ =0 ,

in which 6‘mer s Gsz’ » O0Lext,’ » QB are perturbation forces and moments,

Also
o = 3 +26 (y, 1) (coshksh-1) .
' " k, sinhks h Kk [[¢l® cosh kg h sinh ky h

Denote by Y, Z the components of the displacement vector from the origin
of the reference state to that of the perturbed state, measured along the
instantaneous position of the body axes; then, to the same order of smaliness,

we have
bay =Y (4.7
68.;’ = i

With the definitions given previously, we see that the action of the liquid in

Lol




formulae (4.2, 3, 4) is represented by the forces and moment

-86F} =M1 Y +p ﬂ'y Cu dx dy (4.8)
s

-6Fl =M, Z

~6Lir=p 8 [[f (VorP dr+p[f0*C.. dxdy + p (a, + &) [[y Ldx dy
S S

p
in which
¢p*= o*- y(1+2) , (4.9)
o* = 2% {y, e‘p‘) coshkih - 1 ¢, cosh ky (z + h) + ¢, sinh k, z} ,
1 kill@l|® cosh ks h sinh k¢ h
p [J[ (vo*P ar= ﬁm [y?+ (1+2)%]dr- 4 pfﬂ'yz ar + p [[J (vo#? ar
T T T T
® coshk;h-1 (y, ¢F
VP = 8 cos ,
pgf( o*F p? ks sinhksh |2
g = ‘11351 o+ &o
. and 9%, ¢* satisfy
Ap* = Ap* = 0, PeT (4.10)
%9* = ycos (n, z)- (1+2z)cos (n, y), Pe L, S,
n
%@" = 2ycos (n, z), PeZ, S.
n

From (2.34) et. seq., we see that ¢*, ¢*are modified Stokes potentials which
are determined solely from the geometry of the vessel, the free surface being
"capped" .

With the introduction of potential 3, where

AYy=0 ,PerT, (4.11)
aj ={0 ’ PGE H
dn & , Pe S,
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o

formula (4. 6) may be written as

P%‘f+p5¢*+ﬁ>y§+9(ar+gr)c =0, , (4.12)
_ 2 ;. coshk(z+h)
lp ‘{’gl(t) ki sinhk;h ¢,
2 (y, @)
y=2%
1] @ll?

Thus, it follows from formulae (4.8, 9, 10, 11, 12) that the action of the liquid
can be determined also from a computation of forces and moment (along o v,
o'z’ and about o x’ respectively) resulting from the solution of the linear problem
shown in Fig. 5, Y, Z, 8, { being taken as infinitesimals.

Formula (4.95) represents the moment of inertia of the '""capped" liquid about
the center of rotation, and obviously does not equal the moment of inertia of the
"frozen' liquid about that point. Indeed, if we denote by I’ the moment of inertia
of the'"capped' liquid about 0’, and by To’ that of the "frozen" liquid about the same
point, then

B('_ _9 yz ar # R coshkih-1 (Y, ‘pl)a (4.13)
L 'm‘ L’ 1 ki sinh ki h ||

'L/= pﬂ:r [y2+ (1+ Z)z:ldT s
T

a ratio which can be shown to be less than unity. In particular,

I% _4p 8o coshkih-1 (y, ¢ F
= = VAT +5— Z , (4.14)
o Te ‘J'!I T 1 ky sinhksh  floyf|®

T =p [I] [¥°+ (z+1n/2Pldr,
T

at the center of gravity of the liquid (1 = h/2). Moreover,
Br=1% + M, (1-h/2P, (4.15)
Tor=To+M (1-h/2F .

The behavior of (4.13) may be illustrated effectively by considering a
rectangular tank such as shown in Fig. 6. We have, for this example,



/S s s L L L Z

yd
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Figure 5. Linear model for simulating action of liquid in perturbation equations.
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Figure 6. Liquid filled rectangular tank.
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B, (1/3) . (64/m) (a/h) .
To/ {(1/a)2 - (1/a)(h/a) + 1/3 (h/aF+ 1/12}  {(1/a)- (1/a)(h/a)+ 1/3 (h/a)?+ 1/12}
123 2 /1° tanh i7h/2a} . (4.16)

This ratio is plotted in Fig. 7 as a function of 1/h with a/h as parameter. Note

that for any given a/h the "capped'" moment of inertia of the liquid is less for
rotation about the center of gravity of the liquid (1 = h/2) than for any other position.
Similar results may be obtained for other configurations.

To put formulae (4.8, 12) into symmetrical form, we introduce the
transformation

(y, ©)
Ei—”(pi”z a , (4.17)
getting
- GF;/ Ml ﬁay +p Z‘(‘y, (pl)qu s
- 8F}’ =M, 6a,’ ,
2 hky h-1 -
—oLi =1 6+p D[ (cosh k, ) 1]% ds (4.18)
1 kysinhk, h Il 4l
+ 0 (a + gr) E (y, (plg)e q
1 e
, - , o F 2 (coshky h - 1) 2,
P(zy (pi)z qi +p(ar+gr)g_(p71 q1+p[ . i _lj(y,()IDiz) 6
ki || ¢]|® tanh ky h | ol ks sinh k; h oyl
(Y (Pt)g
+p -2 22. Ba,’ = 0
"‘Pt“z Y
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Figure 7. Ratio of "capped" moment of inertia to ""frozen" moment of inertia for rectangular liquid filled tank.
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MECHANICAL ANALOG FOR REPRESENTING THE ACTION OF
THE LIQUID IN THE PERTURBATION EQUATIONS OF MOTION

We enquire how to duplicate the action of the liquid, represented by
formulae (4.18), with a mechanical system. Accordingly, consider the system of
pendula attached to the vehicle shown in Fig. 8, where

M, ~ Mass of ith pendulum,

L,; ~ Distance from center of rotation to hinge point
of ith pendulum,

L,y ~ Length of ith pendulum arm,
Io ~ Rigid moment of inertia,
Mo ~ Rigid mass,

Lo ~ Distance from center of rotation to point at
which Mg is situated.

The velocity of the mass of the ith pendulum is simply
Vi ={0,[(uy’- Lg1 8)+ (6 + qy) Lpy cos qg], (uy/+ Lpy (6+qy)sinqy 1} , (5.1)
and that of mass Mp is
Vo = {0, (uy'-1o6), u’3 . (5.2)
It follows that the kinetic energy of the mechanical system is

N . N
Tma :% (uy‘12+ uzlz) {MO + 2 Mp1}+ % 62{10+ M0L02+ z Mpi (Lai - Lpi )2} (5.3)
1 1
. N N . . N .
- Buys {(MoLo + 213 Mops (Lgg - L) J+ % ‘{: M Lys® a5 + 8 % Mps Lpi® G

N . .
+Z My Ly q {u,’ sin q + (u,’— L,y 8) cos qi}
1




LSI
L,
g
M 90}1& mcm




. N .
+ 6% My Ly {u,’sinqy + (u,’- L,y 8) (cos q- 1)1 .
1

The equations of motion may be obtained in manner similar to (3.2),

d (3T y 43T .
ey (au/)' S~ Fomy' ﬂ'fg, dm - fﬂ'g,'dm 2y [MO+EM91], (5.4)

g (aT ) T —Fext ‘- []I g.' dm - JIJI g./dm - g;’ [MO"'EMM] ’
t Buy

T*
d oT 3T aT ,
E (a—e")*‘uy"ga:,‘uz au Lext"ﬂ‘j‘(y 8: -zgy)dm

T#*

- ﬂ‘f[(y. cos B - zesin B) g,/ + (11 + ze cos B + yesin B)g,’1dm + MoLo g’
Te

N
- '{: Myt {g:/ Lyps sin gy - gy’ (Lss - Ly cos qg)}

g——(—g%)-%= ﬂ]‘(g,'smﬁ g,/ cos B)z. d m+_ﬂ:f(gz'cos/3+g,,’s1n;3)y¢= dm+Qg,

Te

d (8Ty_2T
dt '9q;  9qp

=~ Mp Ly (gy7 cos qq + g, sinqy) ,
where
T = Tagp+Te+ Ty,
T., and T, are given in (3.11)and (3.12) .
Repeating the same simplifications and arguments used to obtain the
perturbation equations for the motion of the liquid propellant vehicle, (5.4) gives,

after considerable work,

- - N
(Mg, + M. ) 8ay/ + 2 (S8 + 1. M. )6 - So?y, B= OF ext 7 - {{Mo + T M,,]6a,’ (5.5)
© 1
N
+ E MpiLP’- ('ix ’
1

N
(Mub + Me)éaz, = GFextz’ - {[Mo + % Mp1] 6a,’} ,




2 (cosh k; h-1) (y, @ P
Mpint(Lpz - Lu) = L - 1] _3_'__12_ ,
ks sinh ksh Il o4

N
Io + MoLo® + Z Myt (L - Lp)’ =13 .

Relations (5.7) contain six unknowns M, Ly, Ly, Lo, Mo, Io. One more equation

18 needed to make the system determinate, nainely, the first moment of mass about
the center of rotation,

N
MoLo + }1: My (L, - L) =M, (1 - h/2) . (5.8)

golving (5.7, 8) simultaneously, we get

1
-— 5.9
Lot k; tanh ks h ( )
2
Mm=p&%k,tanhk‘h ,
el
Lo = 1 . [ 2(coshklh—1)]
** Ky tanh k; h *" k,sinh ki h '
_ (y, @)°
Mo =M, pE 5 k, tanh k1h ,
1 led®
Lo =M, (1 - h/z)+pz (y, ©:)® (2 (coshk; h-1) - 1]k, tanh k; h
°- ||</1’||2 " kysinhk h ! fE
M, - (y—(p;)z_ k1 tanh kih
[l o4
2 -
I = 1§ - (y, ¢)° c (coshkih 1) 1%k, tanh K, b

TP °7 7 kysinh k. h

- {M.(1-h/2)+p z N (y, @)® -2 (coshkh - 1)

-1]k, tanh k; h}?

l| W12 ky sinh ky h ’
Mi-pZ M k, tanh k; h
A
in which
hkih-1 (y ‘Pi)a
=T, -4p dr+sp2°°s s :
Hf Y Tksinhinh  oi®



R

(Io"xb’ + Iglxl)é + 2 (So:’. + 11 M.) 68.,' - (IO:Y. + 11 So:y.) B

= (8 + 8)Soly, B =8Laxt,’ - {{Io+ MoLS

N sz N N
+ Z My (Lygg - Lp)®10 + Z My Lps (Lipg - Lyy) &1 + (2, + g:) f MpLg qil ,
1 1

MP‘ Lpla a’- + (ar + gr) Mp’, Lp‘ gy + MM Lp‘ (Lp’. - Ll’.) é
+Mpleg 6a,' = 0 ,
:Ya B+ (al‘+ gr) sO:y° ﬁ - ( :y°+ 11 SO..y.)e - SO:y. Gayl=QB ,

in which the bracketed terms on the right hand members of (5. 5,,2,2) and (5.54)
represent the action of the mechanical system. Explicitly,

Il

N N
) [Mo+?Mp1]6ay'+§MmLm ds (5.6)

_ GF‘:"

N
[MO+§MPL:|63-ZI ’
ns 2 N ez N ) G
- 8L/ = [Io + Mo Loo+ & My (Lgy - Lip1)®18 + Z Mpy Lips (Lipg - Lygg) dg
1 1
N
+(ar+gr)21: MpLp 91,

MpiLm2 as + (a.+ gr) My Lipy g1 + Mpg Ly (Lpi - L“)G
+ Mping 6ay/ =0

The forces, moment and surface wave height terms in formulae (4.18) will
match formulae (5. 6) for a finite (or infinite) number of pendula if the following
associations are made:

N
Mo+Z My =M, , (5.7)
1
(y, ©)®
My Ly =p ’ ,
n AR
2
Mpin12= O(Y, <|o1) ,

ke || @] ® tanh k, b
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The amplitudes of the wave height are related to the angular displacements
of the pendula by

_ (Y- ‘Pl)

S e

Thus, the action of the liquid represented by formulae (4.18) may be
duplicated with a mechanical system--a system of pendula plus a concentrated
mass and moment of inertia. A similar analogy may be effected with a system of
springs and masses.
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CORRELATION OF ANALYSIS OF VESSEL OF GENERAL SHAPE POSSESSING
ROTATIONAL SYMMETRY WITH EXISTING MSFC ANALYSIS

Formulae (4.8, 12;) hold for containers of general shape possessing
rotational symmetry about the z-axis, Figure 9, if we approximate the various
volume integrals occurring in the analysis as

[Te.oae=T¢.0 dr+£fdsfoc(...)dz ,

T(t)

and if we evaluate directional derivatives over the undisturbed surfaces Z, S.
Such simplifications can be justified. Thus, for the action of the liquid contained
in the vessel of Figure 9, we have

- 8F =My bay + p [Jy Luds (6.1)
S

- 6F}=M,; 6a,’ ,

~8Li=p 8 [[ (vo*)2ar+p[f 0* .. ds + p(a. + g) [Jy Cds
T S S

p%%’+pé¢*+pyﬁay’+9(ar+gr)’: =0,

where

Ad¥ =0 , PeT AYp=0,PeT,

a-ﬂ'
i =ycos (n, z) - (1+2)cos(n, y), PeZ, S, 3 Yo, Pez,
on =

dn Ct,P€S.

This system may be brought into a form suitable for comparison with the
analysis of [ 7] , if we substitute

z-L forz ,

L+ L; forl ,



Figure 9. Arbitrary shaped container with rotational symmetry.



and let

p¥=y (z+ L)~ L2 y* ,
where the coordinates are now feckoned from the center of gravity of the undisturbed
liquid; L is the distance from the center of gravity of the undisturbed liquid to the

quiescent free surface; L, is the distance from the center of rotation of the vehicle
to the center of gravity of the undisturbed liquid (Figure 10). These substitutions give

- 6F}/=M, bay'+p [Jy Lee ds (6.2)
S

- GFz’ = M1 éaz’ y

-61},/=13“é+Pﬂ[L (y -L{*)+ Ly yl&s ds+p(a,+g,)ﬂy lds,
S

p%—?+P OLL(y - Lp*)+Lyyl+ Py bay +p(a, + g)C:= 0 ,
in which
AY* = 0 , Pert (6.3)

3*
%ﬁ’ _ AL1+ZL§OS(nLy)  PeSy S |

¥ = pfﬂ(yz+ zz)d7—4pﬂf 7 d’r+2pL2JI *z cos(n, y)ds + M, L?
T T S+Z

We can express the solution for Ppand  as a generalized fourier series of
eigenfunctions ¥,

C==?€1¢1, (6.4)
¢=§%ei o

where ), satisfies
AY, = 0 , PeT, (6.5)
oYy _0 , PeZ ,
°n E%f‘=—§—1:b1,P€S,




S
./
4 !
LIQUID CG :
Y
A
>
/ B
X
Ly
6
‘d'\
| Y

Figure 10. Arbitrary shaped container with coordinate system located at undisturbed
liquid center-of-gravity.
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Fowy=0, 1 #;
S
Introducing (6. 4) into (6.5), applying integral transformations, using boundary
conditions (6.32, 5z) and orthogonality condition (6.55), we get

w (1}
- 8Fy" =M, 6a,’+ M, ? | sl|® by € (6.6)

- 6F%I = M]I bay'

6Ll =14 B+ M T |l [(ar + g)by £s + (L (by - he) - Ly b £ )
1
£+ g&xf_gx_) Ky £+ Ky (L(by - hy) - Lyby) 6+ Kyby b,/ =0,

where

Hﬂbtl“zv _ Js“fﬁ ds , V:fﬂ'dr , (6.7)
T

by V[ ]l® = .JT y ¥ ds, Kohy V{fl2=2 JT z Py cos(n, y) ds
S S+Z

Formulae (6.6:,2,3) are equivalent to formulae (3.47, 46, 48) of (7], except for
terms involving the first moment of mass about the center of rotation of the vehicle.
In our analysis, such terms have been included in the rigid vehicle dynamics.
Formula (6. 6,) differs from (3.49) of [7 by the term K (a, + g.) by 8 . The reason
for this is that the equations for the action of the liquid in ({7 ] were not perturbed
but arbitrarily linearized.

On the other hand if we compare (6. 6) with (5.6), we get

N
Mo+§3Mp1=M1 , (6.8)

MpsLps = My L || ® b,

2 2
My Lp® = M, LKQL Tod®
i

Mps Lips (Lipg - Lygg) =My L by ”‘/h”z (L(b; - hy) - Lyb,] ,

N 2
Io+MoLoa+>1:Mm(Lu S RS -
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and the first moment of mass about the center of rotation yields

N
Molo+¥Mpt(Ln£'Lpl)=M1 L, (6.9)
where
ai = L%,‘ ) (6.10)

Formulae (6.8, 9, 10) are equivalent in all respects to formulae (3.83) of (7] .
In other words either analysis yields the same mechanical model even though they
differ by a term in the free surface equation.

Methods for computing the eigenfunctions, eigenvalues and associated quantities
are discussed in the next section.
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FREE VIBRATIONS OF A HEAVY LIQUID ENCILOSED IN A FIXED VESSEL

When attempting an actual stability analysis of a liquid propellant space
vehicle, the first problem the engineer encounters is that of determining the free
vibrations of the liquid while the vessel is at rest.

VESSELS OF GENERAL SHAPE
Putting ® = u = 0 in formulae (2.29, 31, 32), linearizing the resulting
expressions, we find thit the problem of linear oscillations of a heavy liquid enclosed

in a rigid, immovable vessel is reduced to one of finding, in the class of functions
satisfying conditions

v = Ve, PeT, (7.1)

3¢ _ (0 , PeZL,
on CQ,PGS,

<pt+gC=Os PesS ’
all possible functions @(P, t), Pe Tsatisfying
Ap=0 (7.2)
See Figure 11 for notation.

The solution of the Neumann problem--namely to determine a function ¢
harmonic in T and possessing a normal derivative % that agrees with a specified
function f defined on £ + S (subject to the restrictiols H ¢ds = 0, ﬂ f ds = 0%)--
is furnished by the formula Z+8 S+X

© = Nf.

N is the integral operator

0@ =[] N(P,Q) f(p)dpP
S+

45ee notes.




——

P 4

d

x*

Figure 11. Partly filled vessel at rest.

Figure 12. Two vessels partly filled with a heavy liquid, one enveloping the other.



whose kernel is Green's function for the Neumann problem. According to the general
theory, the kernel is symmetrical and possesses for P = Q a source-like singularity:
log P! in the two-dimensional and p™! in the three-dimensional problem, where
Pp= [(xp - %)%+ (yp - )%+ (25 - 24)?] %
N is a completely continuous self-adjoint operator. Using (7.12) we get
©@Q) =NL. , (7.3)
o@ =[] N(®.Q ¢ (P dP

¢ can be eliminated from (7. 1a):

NCi + gL=0 (7.4)
Assuming that Q€S in (7.4), we obtain an integro-differential equation for the
determination of the linear oscillations. Formula (7.4) is especially useful for
studying general properties of the system, but not too practical for actual numerical

computations. To this end we resort to variational mechanics.

We begin by constructing the Lagrange function L = T - Il for our problem.
As is known, the kinetic energy is, to second order of smallness,

T=%p [[[ Var,
T

taken throughout the undisturbed volume T occupied by the liquid. But v° = (7¢)?
and therefore from Green's theorem, if ¢is single-valued, and since A= 0,

T =%p [[[ (vo)2ar=#p [JoC. ds, (7.5)
T S

because of (7.1z). In addition, with (7.3) T may be represented as

T=%0 [[NC - Cuds. (1.6)
S
The potential energy Il of the liquid is given by

= pg f[fzar
T(t)




This integral can be written as

ngz dr =pg‘j‘+ﬁz dr +pgﬂIz dr

T(t) Ty ()
in which T is the volume occupied by the liquid in the equilibrium position and
T.(t) is the volume enclosed between the free surface z = { (X, y, t) and the plane
S(z=0). The first term in the right-hand member of this expression is the
potential energy possessed by the liquid if the free surface is replaced by a '1id".

If we choose the zero potential to correspond to the liquid at rest, this term may be
neglected. The last term may be approximated as

pgﬂ"]‘zd‘l’:pgﬂ‘dsfczdz = %‘EH £2ds .
T(t) s ° S

Thus, the potential energy is

H:Ezggczds. (7.7)

The Lagrange function, using (7.5, 7), is

L=%p [[T(vo)2dr-%3pg[f €2 ds , (7.8)
T S

or, using (7.6, 7)

L=%p[[(NC L -gC%ds. (7.9)
S

With (7.7) or (7.8), the time integral may be constructed,
t
1=/ Lat, (7.10)
[e]

and, following Hamilton, the equations of motion may also be obtained from an
isochronous variation of integral (7.10),

§I=0. (7.11)
Consider the natural oscillations of the liquid. Accordingly, let
o(P,t)=p(P)cos ot , (7.12)
£ (P,t)=®(P)sinot ,

where the natural frequency O is to be determined. With the appropriate



substitution of (7.2) in (7.1,2) and (7.4), we get

Ap= 0 , PeT,

N ={0 , PeZ |

on od, PeS ,

op = gP, PeS ,
or

0°N¢ = g o,

for the determination of the natural oscillations of the liquid. Except for a few
isolated cases and prismatic cylinders which we shall consider shortly, closed form
solutions of the above differential systems are practically impossible to get.

However, we can make use of variational methods. To this end, substitute
(7.2) into (7.10), recalling that L is given by (7.8) or (7.9), and integrate over t
from 0 to 2m/0o(full cycle). This gives, after omitting a non-essential multiplicative
factor,

—t
]

T (vp)2dr-x [Jo° ds (7.13)
T S

AfND - @ds- [[e2ds
S S

where A = 0% /g . Thus, the determination of the natural oscillations of the liquid is

reduced to a variational problem for functional (7.3). According to the differential

system, the solution of the extremal problem should be sought in the class of

harmonic functions. It can be shown that the extremum will nevertheless coincide

with the value obtained if we consider any functions ¥ € 1z as admissable functions,
being the class of square-summable functions.

As is known from the theory, the lowest eigenvalue A, is determined from
2
A1 = min -ﬂ,;j(w’l) dr (7.14)

szleds

S

The second eigenvalue Az is determined as a solution of the variational problem
J (vg2)2 ar
;

ﬂzb% ds
S

Az = min
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in the class of functions orthogonal to ¥, if ¥, is a function solving the variational
problem (7.4), and so on. Orthogonality as used here refers to the metric defined

inlz, the functions themselves being defined in S,

To solve the variational problem (7.11) for the functional (7.13) we apply the
method of Ritz. Accordingly, let us introduce a system of coordinate functions

{x1(P)} and seek solutions in the form
N
Y = ’f: X1ay .

"Then, proceeding from (7.13) and (7.11), we arrive at the following system of
algebraic equations

N
?a‘ (le,->&5;_,)=0, i=1,2,...,N, (7.15)
where
Olyy ?f.”leV X407, Bt.FHXt X4 ds
T S
with
Uy =0y, #q:ﬁgt .

For non trivial solutions of system (7.15) to exist it is necessary and sufficient
that the eigenvalue A satisfy the determinantal equation

lagy - AByl=0. (7.16)

Denote the zeros of (7.16) by Ay (i=1,2,...,N). In view of the symmetry of
matrices o ¢y and BH , the eigenvalues A are real. The natural frequencies are
determined from

of =\ g (7.17)
The procedure outlined above can be found in detail in books on the subject.

In most space vehicle applications, the determination of the natural
frequencies of an oscillation is accomplished by use of digital computers. In such
cases, the method of Ritz is advantageous because it meets the requirement of
simplicity in standardizing a vast number of computations. The main difficulty
encountered in the practical realization of this scheme is in the selection of the
coordinate functions. Many ingenious selections have been made for specific
problems. However, no general recommendations are available, but in the process
of solving the problem several facts should be kept in mind.

(1) The value of A, is relatively insensitive to the selection of the coordinate
functions x; . Thus, if we replace ¥; which produces the minimum of

=7



the functional (7. 13) by another ’J;l (subject to the restriction
[ vy, v dr #0), then A, will change but slightly.
T
(2) The boundary conditions for § belong to the category of natural conditions
and therefore it need not be required that the functions X should strictly
satisfy all boundary conditions.

(3) Thus, the system of coordinate functions x{ may be chosen rather roughly.
It suffices to provide only for the completeness of the system. Consequently,
many schemes now in use select the x; as eigenfunctions of some volume
containing the volume in question but having a simpler shape.

The method of Ritz is used at MSFC to solve for the eigenvalues K, and the
corresponding eigenfunctions ¥, of differential system (6.5), as reported in [ 8 ].
The analysis is the same as that outlined above if we replace A = Ki | The solution
of the inhomogeneous boundary value problem (6.3) for ¥* utilizing the method of
Ritz is also contained in (8] .

Frequently, the engineer needs an estimate of the fundamental frequency of an
oscillating liquid enclosed in a slightly irregular vessel without resorting to elaborate

computations. We shall describe a method for doing this which is admirably suited
to space vehicle tanks.

Accordingly, consider a heavy liquid enclosed in two vessels occupying volume
T, and Te with equal free surface area S and Z, enveloping Z: (see Figure 12), i.e.,
Ti> T2 .

Recall that in a free vibration, conservation of energy requires that
T + Il = constant (independent of time)

In a natural free vibration, by definition, the system varies with time in accordance
with a common factor cos 0 t, so that for our system

T=T () cos®at, T=T (¢)rsin®0ot,
where
A =0%/g
and

T () =[f (w)2ar, T(p)=[Tp2ds
T S
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Then the energy equation requires that
T=AIl.

Let ”f1 and "i‘dz be associated with the liquid occupying the volume T; and Tz
respectively. Thus, for any function ¥, we have

T (¥) > Tz (¥) . (7.18)
In addition, -let A* and ¥ solve the problem for volume T, and A®, % for T=. Then

1 by 0w (7.19)
Al T, (9*) A% Tz @°)

But, according to Rayleigh's principle, we have, on replacing ¥ by ™,

1 ()
v T2(9?)

Using the first expression of (7.19), we get

1.1 T ()
Az Al Ta(ﬂbl)

However, Tl (z,bm)/ﬂ’f‘a (Y)) >1 as can be seen from (7.18) so that
Al > 2B (7.20)

Thus, if we are given two vessels with the same free surface area but such that
21 of the first container envelops Zz of the second container, then the corresponding
natural frequencies will be greater in the vessel whose volume is larger.

To illustrate the use of this theory, consider the fundamental frequency of the
oscillating liquid which in the undisturbed position occupies the volume shown in
Figure 13. Using known results (see pages 7-16), we get the following inequality:

0-8
tanh(ho+h1)>_gi > tanh ho
Similarly, for the volume shown in Figure 14, we get the following approximation to the

fundamental frequency:

2
gt

tanh (ho + h) > > tanh ho



Figure 13, Slightly irregular rectangular cylinder.

r=3.832

Figure 14. Slightly irregular circular cylinder.
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PRISMATIC CYLINDERS

For obvious reasons the natural oscillations of a heavy liquid enclosed in
prismatic cylinders have received considerable attention in the literature. The
problem is sufficiently important to warrant special attention.

With the notation of Figure 15 and the formulae from the general theory
(7.1,2,), we see that the problem of linear oscillations of a heavy liquid enclosed
in a fixed prismatic cylinder is reduced to one of finding, in the class of functions

satisfying conditions
= Vo, PeT (7.21)

= 0 H PeC

’ ’

818/ <

C
SR
Z=0 Sy

0 , PeZz, (Z=-h),

Tl AR

., PeS , (z=0) ,

_15' Z()

~~~~~~ RN %0 L g=0, Pes -
e (T o TEETO RE L)
Figure 15. Prismatic cylinder.
all possible functions @(P,t), PeTsatisfying
Ap = 0, PeT (7.22)

Using the method of separation of variables of Bernoulli, we find that for
functions ¢, € series

- coshky (z + h)
R T T (7.23)
L =2 & o,
1
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may be constructed which will satisfy (7.21, 22) if

Api+kig = 0, PeS , (7.24)
%‘ = 0 , PeC,
and
Es+ 058 =0, (7.25)
where
0y = (g ks tanh k; n) % (7.26)

is the ith frequency of the natural oscillations of the liquid. Note that the ¢ , k;
are the same as those defined by the solution of differential system (3.11, 12).
The properties (3.13, 15) hold.

Expansions (7.23) enable us to transform the kinetic energy and potential
energy into sums of squares of the §  and &; respectively. Performing the
transformation, i.e., substituting (7.23) into (7.5) and (7.7), we get

T=é§3"_;p:2_”.2§'?, M=% glol® e?

Our variational principle (7.11) yields the familiar Lagrange equation

dil

d (3T ail
ok

d (8Ty _

q H h £ = - 0'2
at '3, ence §&; 1 &1

T is a positive quadratic form and so is Il since we have a stable equilibrium.
Thus, for every coordinate &;, i # 0, we obtain a stable oscillation
§1=Cle\/:10‘twith 02 >0.

We see from the preceding that the determination of the natural frequencies
and shapes of oscillation of a heavy liquid enclosed in a prismatic cylinder depend
on the solution of the boundary value problem

Ao +K°p = 0, P€S
X _ ., pec.
on




We consider, summarily, solutions of this system for several boundary curves.
Before proceeding, we should point out that the origin of the coordinate system for

a given shape (cross-section) is not necessarily situated at the centroid of the
figure. Thus, to conform to our previous assumptions the coordinate system should,
in each case, be translated to the centroid of the figure.

(1) When the boundary curve C is a rectangle such as shown in Figure 16, the
surface harmonics must satisfy

(§+§.+ K)o (x,y) =0,

QQ:O forx=0,x=a,
dx

L8

Sy =0 fory=0,y=b,

It is convenient to arrange the eigenfunctions and eigenvalues in a two-
parameter set of solutions, and it is readily shown that

¢y =cos 1T X cos jgy , (i,j=0,1,2,...),
a
2 -]

Ky, ? =ﬂ3(§g_+ 'l'lg), (i,j=0,1,2,...)

(2) When the curve is an isosceles right triangle, Figure 17, the surface
harmonics must satisfy

(_aa_:2+ai; +K)o(x,y)= 0,
%

Sx 0 forx=0,

5

X g for x' = alfZ

x’

I

0 fory=0,

The eigenfunctions and eigenvalues obtained from the solutioh of this
system are

@1y = cos[Z (i +j)x]cos [gj y1+ (-1)* cos [g (i+ j)leos[ T ix],

,j=0,1,2,...),
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Figure 16. Rectangular boundary curve.

7 X' = (X+Y)/(2)%

Y = (Y-X)/(2)}

Figure 17. Isosceles right triangle boundary curve.
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=sin[’_a":/2 (i+2j)x']ssin[a‘"\/2 iy’ + sin( vﬁ(i+2j)y']sin[;:/z ix'],
(i=1,3,5,...;j=0,1,2,...),
= cos [~ (l+2j)x]cos[a\£ 1y]+cos[a~f (1+2])y]cos[mix]

1

Ky = (P0G+2+ P, (Li=0,1,2,..0)
(3) When the boundary curve is a circle, Figure 18, the surface harmonics
must satisfy

2.1 3 1_f+ka) r,8)=0
(SF* T 37 T 7 392 olr,

&

=0forr=a.

o
=

The solution of this system gives

1y =T (kyy 1) cos_]e (i=0,1,2,...; j=1,2,3, ...)

Ji(kya)=0, (i=0,1,2,...;5=1,2,3,...)

Ky, is the jth root of the derivative of Bessel's function of the first kind
of order i.

(4) When the boundary curve is a circular annulus, Figure 19, the surface
harmonics must satisfy

32 3 3%
ety 5t P agr T KIR(m 0) =0,

9¢_oforr=a, r=b
or

The solution of this system gives

©13= LYy (kyya) J4(kyyr) - Iy (keya) Yo(kyy 1) ] (S;:,% ig,
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4 X =rcoséf

. Y =rsinb

, b 0 sr Sa
\.

a \ 0 <8 <27
P(r,e)

r
— X

Figure 18. Circular boundary curve.

r cos B

<
»
i

r sin @

*
=
1

P(I‘,e)' 0 =6 =< 27

o X

Figure 19. Circular annulus boundary curve.
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(1, §=0,1,2, ...;1#3=0),
oo = const,
k00=0’

Jil(kq a) Y;l(k“ a)
=0, (llj=09 1, 2, ---;i#j=0) .
I (kyy b)Yy (kyy b)

Y, is Bessel's function of the second kind of order i. Some zeros of
the above determinant may be found in [ 9] .

(5) When the boundary curve is a circular sector, Figure 20, the surface
harmonics must satisfy

A+l 2. L B ), 8)-0

%‘29 =0 for 6=0, 6= T (note change of variable in

Figure 20.)
The solution is determined
@y=d; (kyyr)eosjb, (i=0,1,2,...55=1,2,8,...),
2a
©Yoo = const. ,
koo =0,
Iy (kyya) =0, (i=0,1,2,...53=1,2,3,...).
2a

(6) When the boundary curve is the sector of a circular annulus, Figure 21,
the surface harmonics must satisfy
3 .1 3, 1
(3=t
d3r® r dr (2ar

)2 ’aleag‘+ka)(p(r’ 9)=0n

i(*D—-=0forr=a,1'=b,
ar
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X=rcos(2a6+6)

Y
A Y =rsin (2 06+ 6)
//.
, 2 0 sr <a
d P(r,9)
// e)_ ] 0 s9gsnm
[
!( \‘( R l% i X CZ=G;~OQ
] y — n
| !
v J
\ I}
\ /
\ /7
\ /7
A 7/
~ ’l
\\\ ’/

Figure 20. Circular sector boundary curve.

X=rcos(2af+8)

Y=rsin(2a 8+ 8)

b sr £ a

0=9 =1

: X o= 6-0
/ 2%

Figure 21. Sector of a circular annulus boundary curve.
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20 _

Y 0 for 8= 0, 8= 7, (note change of variable in

Figure 21).

The solution of this system gives

Oy =LY, (k )Jy (kyyr) -Jg (kyya) Yy (kiyr)lcos b
2a ia 2 3a

(i,j=0,1,2, ...;i#j=0),

Yoo = const. ,

Koo = 0,
J tl (ku a) Y‘I (li a)
7a ia
=0,(,}=0,1,2, ...;54#}-0)
I, (kg b)Y (kiyb)
7a ia

(7) When the boundary curve is comprised of two confocal parabolas such
as shown in Figure 22, the surface harmonics must satisfy
aa aa
( S E S )+ Bl (u, v)=0

1
{u2+v’a

So 0foru=(2p)%
du

i('9=0forv=i(2p)é

v
The characteristic functions of this system are
‘Pu=Ha[lu,\/E;? ulHe (- Xyy Wk v1, (i, j=0,2,4,...),
@1y =HolXyy Vkij ulHo [- Ay ki v], (4, 5=1,3,5...),

Yoo = const. ,

While the eigenvalues are determined from
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X = % (®-+v°)
Y = uv
X

0su=<(2p)t

(2Pt sy s (2 p)?

Figure 22. Two confocal parabolas boundary curve.
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H./[X” ,V.EPEH 1=0
H.' [- At;',\/l ZPEU l=0

(i,3=0,2,4,...),

I"OIEA],‘ ,v2 pk(s ] =0

Ho'(- A1y ,v2Pkiy 1=0

(1, 3j=1,3,5, ...),

koo = 0,

H, and Hp are defined as the sets of solutions given by the following
differential systems:

H' (A, x)+(A+®)H. (A, x) =0,

Ho(X,0) = 1, H,(x,0) = 0,

and
Ho' (A, %) + (\+ @) Ho (X, x) =0,
Ho (A, 0) = 0, Ho'(x, 0)=1,
respectively. Here x* = ku® or x* =kv® , and \ is a separation
constant (positive, zero or negative). Power series expansions for

H. and Hy are obtained by the method of Frobenius as

Ho (A, x)=1-4 >u:2+2—}1 (AZ—Z)x4-7Tlo(X3- 142)x8+...,

S SRS S SO S__1 (z3. 7
Ho (X, x)=x 5 AX *150 (A%4-6)x 5040(k 26 A)x" +...,

in which non-zero coefficients of x®are connected by

n(n-1) C,+ACp o +Cpq = 0

H, and Ho may also be expressed in terms of the confluent hypergeometric
functions

He (X, x)=exp LE)F (F-+ 212131 12),

_ Xyp (B, L (3
Hg-,().,x),—-xexp(—-i2 )F(4+4 1M2|ix‘).
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Some of the allowed values of ky, (and A,,) are given in Figures
23 and 24 for both the even and odd quantum numbers (i,j). More
information may be found in [10] .

Figure 24. Solutions of H] (z,x) = 0 and Hc')(—z, x) = 0.
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(8) When the boundary curve is an ellipse, Figure 25, the surface
harmonics must satisfy

1
a°(cosh® u - cos® v)

(25 v )+# 10 (u, M)=0

%‘& =0 foru=ug
u
The solution of this system gives
) (
@y = 0f; + o5y,
(- a® 2y, (1,1=0,1,2, ...)
‘pij_cel(vy ktjr)cei(u’ k!jz‘)! !j Ol y Ly o)y

3 a2
o =8 ey (v, kt,%)Se,(u. ku%), (1,3=1, 2, 3, ...),

where the eigenvalues corresponding to (p(a and Jf,’ reapectively, are
determined from

2
Céi,(UOp klj—z;)=0 ’ (11 j=0! 11 2, -'-) '
and
7/ a2
ey (w, ki F)=0,(i,§=1,2,3, ...)

cey , se; are the even and odd Mathieu functions of order i,
respectively. Ce; , Se; are the even and odd modified Mathieu functions
of order i respectively. Primes denote differentiation with respect to
the argument. Some of the allowed values of ky,may be obtained from

[11]

Y
u = Ug
v - X
, |
‘| I X =z coshucosv
I Y = asinhusinv
a cosh up
0susu
o
0svs2anm

Figure 25. Ellipse boundary curve.
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SMALL OSCILLATIONS OF CONSERVATIVE

SYSTEMS POSSESSING LIQUID CAVITIES

To facilitate an understanding of the general theory of small vibrations of
conservative systems possessing liquid cavities, it is worthwhile first to consider
several examples.

INVERTED PENDULUM PROBLEM

Let us analyze the plane vibrations of the liquid-containing body shown in
Figure 26 about its position of equilibrium. The oscillating body is an open vessel,
partly filled with liquid, which is attached to a fixed point o’ by means of a weightless
rod and a linear rotational spring.

To describe the motion of the system take two cartesian frames of reference
o'x’y 'z’ fixed at the point of suspension at a distance 1 below the '"capped" free
surface, and oxyz fixed relatively to the vessel. Reference oxyz is oriented in such
a manner that oz is measured positively along the outward directed normal to the
undisturbed free surface. Thus the free surface, denoted by S(t), coincides with
plane xoy (the plane z = 0) when the vessel and liquid are at rest.

Let
z=¢(x,y,t)
be the equation of S(t) when it is displaced. Denote by Z(t) the wetted surface of the
vessel, and by T(t) the variable volume enclosed by Z (t) and S(t). Let L, T and S
represent the values of Z(t), T(t) and S(t) in the undisturbed position. All surfaces are

assumed to be piecewise smooth.

Coordinate systems oxyz and o'x'y z” are related as follows:

X 1 0 0 x' (8. 1)
y = 10 cos 6 -sin @ y’
7/
Z

z+1 0 sin 6 cos 9



Figure 26. Liquid-containing inverted pendulum.



‘x' 1 0 0 x
y = |o cos @ sin 0 y
z’ 0 -sin® cos 6 z+1

The vessel is moving relatively to inertial space with motion described by an
observer in inertial space as a velocity

i=(u', w' vw')=(0, 19 cos 8, 18sin 9) , (8. 2)
= (ux, uy, u;')=(0,18, 0),
of 0’ and an angular velocity
®=(w, o, w)=(-8, 0, 0 (8. 3)
= (wy, @y, w,)=(-8,0,0).
The velocity of an invariable point in the vessél, say P, is
=(vs, vy, v )=(0,02,-0y") (8. 4)
= (ve, vy, v2) = (0, 8(z +1), - 8y) .

In particular, if cos (n, y),... denote the direction cosines of the outward
directed normal to surface Z(t) at point P, we have

»=0((1+2)cos (n,y)-ycos(n,z)), (8. 5)
when referred to moving axes oxyz.

Denote by q (P, t), 7 (P, t) the velocities of the liquid particle PeT(t) at
time t as estimated by observers in o'x'y’z "and oxyz respectively. Then

g={0, (z+1)6,-6y}+v . (8. 6)
in which @, Vv are referred to the moving reference oxyz.

Assume the liquid to be homogeneous and incompressible throughout the
motion. Neglect surface and interfacial tension forces and capillary contact
effects between liquid and boundary. Moreover, let the absolute motion of the
liquid be irrotational. Then the motion of the system is completely described by
the following formulae:



Equation for continuity of liquid

§=Ve,v.G=0, Per(t), 8.7
| Ad=0,PeT(t),

Boundary conditions for liquid (kinematical)
. M _
dn [ (z+1) cos(n, y)- ycos (n, z)]+ & cos (n, z), PeS(t),

Constancy of pressure at free surface

p¥+Pg(Ccos 0 -ysing)+%p|Ve-08(0, z+1, -y)|? (8. 9)

-20%p0C +1)2+y*1=0, PeS(t)
Equilibrium condition (sum of torques about o")

M, (R®+ loa)é.+K9'Moglo sin e+pém{(z+l)%f +y %f-}df (8.10)
T(t)

6 [(z+1)cos (n, y) - ycos (n, z)] ,PEZ(t),j' (8. 8)

+p [J[ Uz + l)ga-t (99)-572?—t (%‘5)]d7+9ﬁ {(Z+l):—‘5-y%€ } 2. cos(n, z)ds

T(t) %y

_Pgsinej([t])‘(z+1)d‘r—choser@{ydr= 0,

in which MoR® is the moment of inertia of the vessel proper about an axis through
the center of gravity, parallel to the axis of rotation. l; is the distance from the
center of gravity of the vessel proper to the point o’. Note that the liquid is

S(t) - .

referred to the moving frame of reference oxyz. Formulae (8.7-10) are sufficient

to describe the dynamics of the complete system.

We now make certain simplifying assumptions. We suppose that the motion
of the system consists of small oscillations about the equilibrium position. The
deflection and slope of the free surface are presumed small. With these
simplifications we arrive at the following linear description for our system:

q=V¢, V-§=0, PeT (8.11)

Ap=0, PeT
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3¢ _ 39 [(z+1)cos (n, y)- ycos (n, z)], PeZ , (8.12)
n

dn 6 [(z+1)cos (n, y)- ycos (n, z)]+ & , PeS,
P%f—+pg(§-ye)=o , PeS, (8.13)
Mo (R®+12) 6+ (K-Moglo- Pg TI*) 8+ st:g [(z +1) cos (n, y) (8.14)
+

-y cos (n, z)]%é¢> ds-ngyCds=0,

where 1* is the distance from the center of gravity of the undisturbed liquid to
the point o (center of rotation). In arriving at formula (8.14) the various volume
integrals occurring in (8.10) were approximated as

[ Dar=[If (...)dr+£.jds J;c (...)dz ,

T(t)
and directional derivatives evaluated over undisturbed surfaces.

Introduce functions ¢©*, ¢, harmonic in T, such that

® =0 @+ (8.15)
satisfying conditions
%‘5"‘: (1+2z)cos(n, y)-ycos(n, z), Pe%, S (8.16)

3¢ _ {0 , PeT,
on Ct,PGS.

©* is the potential of Stokes for our problem, and as previously stated are

determined solely from the geometry of T (the plane S being replaced by a rigid
lid). '

With (8.15), the equilibrium condition (8.14) becomes

Mo(R®+157) 6+ (K- Moglo-PgTI*) 9+ peﬂ [(1+ z)cos (n, y)
S+2

-y cos (n, z)]e*ds +P [| [(1+z)cos (n, y)- y cos (n, 2)129 ds
S+Z ot

-pgffyt ds=0.
S




But, from (8.161), (1 + z) cos (n, y) - y cos (n, z) =%§Q* , and
n

p 6 J] {1+ 2z)cos (n, y)-ycos (n, z)]o*ds =p'9"ﬂ‘ (P“-g—(P*ds
S+% S+3 n

psg [(1 +2) cos (n, y)-y cos (n, 2)] %‘f ds ="S&%ne* %(f ds .

Application of Green's Theorem gives

P8 [ o* %f*ds =p 6 [[f (ve*)3 ar
S+% T

because A @* =0. Also, A-:—? =0, and

_é_ (_3_(2)_ 0 , PeZ ,
Bn at - t'.‘l P‘s ’

we have

2@ 2¢* 45 -
Ps{gat ™ ds Pg‘P* Lue ds .

Thus we may write the equilibrium condition in the form

16+p [Jo*Cu ds +K°6 - pg [Ty Lds =0 (8.17)
3 S

where
1=M, ® +12) +p [[[(vo*)?ar,
T
¥=K-Mogl-PgTl*,

With (8.15), the condition of constancy of pressure at the free surface (8.13)
becomes

p'e'<p*+9%5t?+PgC-ng9=0- (8.18)

Functions ¢and {appearing in system (8.17-18) are related by the kinematic
condition (8.163). This relationship enables us to eliminate {. To this end, it is
necessary to differentiate formula (8.18) with respect to t and make the substitution



(8.163). Hence

T=%16%+p6 [JJ(Vo*)(vo)ar+ %p [[[ (ve)? ar (8.21)
T T

in which
J=Mo(R®+15%) + p [[[ (vo*)2dr.
T
The integration indicated in (8.21) should be carried out over the volume which the
liquid occupies in the position of equilibrium.
Next, we consider the potential energy of the system,

n=n0+n1,

Mo=%(K-moglo) 62, M=pgfifz'ar.
T(t)

I1, is the potential energy of the vessel proper, and II; the potential energy of
the liquid. The integral appearing in the expression for II; can be written as

pgﬂ‘fz' dr =pg mz'd1'+ o] 3 _ﬂTz'dT

T(t) T T1(t)
where Tis the volume occupied by the liquid in the equilibrium position, and 7, (t)
is the volume enclosed between the free surface z = £ (x,, xz, t) and the plane
S (z = 0). The first integral in the right-hand member of this expression represents

the potential energy of the liquid if the free surface were replaced by a rigid lid.
Hence, we can write, without loss of generality,

pgﬂIz'dT = pgTz*'
p
where z*’ is the ordinate of the center of gravity of the liquid. But z*' = 1¥ cos 9 ,
so that

p gfffz'd7= pgTl¥cos B~ - #p g T1¥8° + const.
T
Also,

pgjﬂz'd‘r =pg“|T[(z +1) cos 8- y sin §1d7, (from 8.1),
T1(t) T1 (t)
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However, this leads to an artificial increase in the order of the system. This
difficulty ocan be avoided by introducing a displacement potential determined by

=D,

2D . {0, PeX
dn {, Pe8

Using D, system (8.17-18) may be rewritten as follows:

18+p [[ @*D,uds+x*8-pgfD,yds=0, (8.19)
8 8

POQO*+PDy -PgyO+PED;, =0.
It is theoretically possible to eliminate the potential ¢ in (8.18), expressing

it through the free boundary ©= N, as in (7. 3). Accordingly, our system assumes
the form

16+pJe*tuds+x 6-pgffytds=0, (8.20) -
8 8

PO *+PNLu+PEL-PEyB=0.

Let us consider the variational formulation for the linear vibrations of the
inverted pendulum. First we construct the Lagrange function L = T -II for the
system. The kinetic energy is

T=Te+ Ty ,
To=# Mo (R?+1°) 6%, Ta=¢ A [[T (V0 )2 ar.
T
To is the kinetic energy of the vessel proper, and T the kinetic energy of the
vibrating liquid. With (8.15), we have
Vg= 0 VO + Vo,

where ©* is the potential of Stokes which is determined solely from the geometry
of the cavity (8.16;), and ¢ is the potential of wave motion in the vessel satisfying



ngfﬂ'[(l+z)-y6]d7
T1(t)

=ng,Tdec [(1+z)-y6ldz
S o]
-2pg[[C?das-pgoffycds.
S S

The total potential energy of the system is therefore

M=% x"0°+%pgf[¢?dS-pgoffyLas (8.22)
S S

in which
¥ =K-moglo-pgTl*,
The Lagrange function L is given as

L=T-T=%108%p08fJ[(ve*) (volr+#% p [[] (vo)2dr (8.23)
T T
-2%x26°-%pogfft°as+pgoffylas.
S S

Following Hamilton, the equations of motion (8. 17-18) are also obtained
from an isochronous variation of

1= [ Ladt.

Let us now consider the free oscillations of the system. To this end, we assume
that

8=06sin0t, o =Pcosot, L=Esin0t. (8.24)
System (8.20) then becomes

(K¥-10°)8 -pJ[(gy+o*a®) = ds = 0, (8.25)
S

-0 p(gy+0*0®) +pgE+p o®NE=0.
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Assume that the natural frequencies w; and the principal modes of
oscillations £, for the free vibration problem (stationary vessel) are known.
They satisfy the obvious properties

since =, is a system of functions complete with respect to integration over S.
Substituting this expansion in (8 253), we get

" - _BOF .D‘S(EY'*"P*G)—ids

w‘_o I_F ’

after straightforward computation. Introducing this function in (8.25,), we
arrive at the following frequency equation:

(x2-103)= P/gE . (a”b‘ o?)? (8.26)
- g
where
kva'l) bt- ((P*. Et)

a4 = = = =g
'=-£| ' '='£| '

(8y, E)=[[gy=E,ds, etc
S

Equation (8.26) can be solved graphically (see Figure 27) Tzhe unknown
roots are the points of intersection of the straight line Y; = %%~ 1 6° with the curve

p/gz wi (at"'bt g?)?
wf - o2
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Designate by ]."0 the resolvent operator for the operator g E - 0®N where
E is a unit operator. Then, from the second expression of (8.25),

E= 6Ty (gy+o*c® .

Substituting this into the first expression of (8.25), we obtain the following equation
for the determination of the natural frequencies:

(xz—lcz)-p Hl"o. (gy+0*0®) - (gy+o*a®)dS=0.
S

We know from the general theory of integral equations that the resolvent of an
integral equation with a symmetric kernel is a meromorphic function over the
whole complex plane of the parameter ¢ 2. All the poles of this function are simple
and are the eigenvalues of the kernel. Hence our problem is reduced to finding

the zeros of some meromorphic function. The inverted pendulum with the liquid
possesses an enumerable set of natural frequencies. It can be seen that curve
Y2(0?) has an enumerable set of poles.

If one can solve the free vibrations of a liquid in a stationary vessel, then
the above process may be carried out effectively and the equation for the frequencies
can be written down explicitly.

N1 ya y=2

<
)

- =

€
@

Figure 27. Typical plot of frequencies for equation (8. 26).
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For prismatic cylinders (Figure 28), formula (8.26) becomes, if we neglect the
inertial properties of the vessel proper,

: _h _ o (&1)3 ( )2
9o)2 . pabh(l-3y) (0 ya_ pl g ys @) 2.\3,
(Op — _( c,’) = 1;51_(w» Ty T {1+ (7))
o, o,
2 .
[l'lkT tanh k; h]}? (8.27)

in which the surface harmonics ¢ and sigenvalues k4 are obtained from Section 7. Here

od = :_i C,=g/, (8.28)
3
*=T-4 dr+gp ¥ tamhlyh
P “g-jf ¥ pi=1 k¢ [-A

T =p‘fﬂ‘[ya+ Q+2z)7%ldr .
T

In particular, for a rectangular cylinder we have

1 - L lL.)
v, [(Z )27 (%) - 2 1
T T e T RO, hum e
_(1)2’
Op
g/m4

a’ a’ a _4l+3; l+;—511,3,...Ts

inh
a

w
g 1 (&) {1+(%)=[1-"l(lﬁ)tanh H’u—‘-‘—]}’. (8.29)
R TR R »

o, O,

The solution of (8.27) for 1/h = 1/2 (Figure 29) is shown in Figure 30.

A frequency equation similar to (8.26) may be obtained for the plane vibrations
of the liquid-containing pendulum shown in Figure 31.
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1*=]-h/2

Figure 28. Inverted pendulum in the shape of a prismatic cylinder.
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Figure 29. Rectangular cylinder with 1/h = 1/2.
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Figure 30. Solution of equation (8.27) when 1/h = 1/2 (for 00/0; = 5).
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Figure 31.

Liquid-containing plane pendulum,
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To be sure, it can be shown that the required system of equations for this
problem is

16 +x20+p[Jo*¢uds+pgffygas=o, (8.30)
S S '

Po*B+p NL+PEL +PEYO=0,

in which
1=M°(R®+12) +p [J[(Ve*)2ar,
T
x =M’ glo+pgTl¥,
with
Aop¥*=0, PeT
—2—?: (1-2z)cos (n, y)+ycos(n, z), PeS, I,
and
¢ =N (.
Ao =0, PeT,

3¢ _ {0, PeT
dn Cg,P(S.

Assuming simple harmonic motion as before and repeating similar arguments to
those used for the inverted pendulum problem, we find

-] a2
x3-103=p/g? Q‘L(%‘_J'abg’a) : (8.31)

= #*# =
=y =4

exhibiting the same form as (8.26).
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The plane vibrations of the spring-mass system sketched in Figure 32 gives
rise to a somewhat similar frequency equation.

Indeed, the system of equations is given by

ma+Kq+pg<p*cudS=o, (8.32)

po*q+PNLu+Pgl=0,

in which
m=M+p [[[(vo*)?ar
T
with
Ap* =0, PeT
3
se¥ cos (n, y) P€L, S,
dn
and
(p = N C\'- ’
Ap = 0,'PeT
3¢ _(0, PeZ
dn Cg , P€S
Assume that

q=Qsinot, { ==sin0t,

n

E=2c1 {
i

Then, it follows that the frequency equation for the system is
a P w,°€b, 09)?
K-M¢o = —— ;; ,
( ) g wye -0

=)

1

by

ML *
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Figure 32. Inverted liquid-containing pendulum and spring-mass system.
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PLANE VIBRATIONS OF A CONSTRAINED LAUNCH VEHICLE

Consider now the plane vibrations of the liquid-containing body illustrated
in Figure 33 about its position of equilibrium. The oscillating body is an open vessel,
partly filled with a heavy liquid, which is connected to a mount by means of a rigid
weightless rod and linear rotational spring. The mount, in turn, is constrained to
move horizontally by means of a linear translational spring. When viewed as a rigid
body, the system has two degrees of freedom. Such an idealization has been used to
approximate the vibrations of launch vehicles in a constrained condition (attached to
the launcher). To simplify matters we consider only one tank in the following. The
results are quite general and can be extended to two or more tanks.

To describe the motion of the system take two cartesian frames of reference
o'x 'y ‘2z’ fixed at the point of suspension in the equilibrium position, and oxyz fixed
relatively to the vessel. Reference oxyz is oriented in such a manner that oz is
measured positively along the outward-directed normal to the undisturbed free
surface. Thus the free surface, denoted by S(t), coincides with plane xoy (the plane
z = 0) when the vessel and liquid are at rest.

As before let
z= C x, y, %)
be the equation of S(t) when it is displaced. Denote by L(t) the wetted surface of
the vessel, and by T (t) the variable volume enclosed by Z(t) and S(t). LetZ, T
and S represent the values of Z(t), T (t) and S(t) in the undisturbed position. All

surfaces are assumed to be piece-wise smooth.

Coordinate systems oxyz and o'’x 'y'z' are related as follows:

-

(X (1 0 0 x’' 0 l (8.33)

~

vy} = |0 cos gz - 8inqa y - Q. co8 da

~

Z 0 sin Q= COS8 (| z q;sinoa+l\,

y) =10 [Jol- W) sin gz y

z 0 -sin qz cos gz | |(1+2)
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with 1 the distance from the center of rotation to the undisturbed free surface.

The vessel is moving relatively to inertial space with motion described by
an observer in inertial space as a velocity

=(ug’, uy’, u;) =(0, @ +1 G cos qz , - 1 gz sin gg) (8.34)

[}

=(ug, uy, u;)=(0, Gcosg+1q, ¢ sin gz)

of 0’ and angular velocity,

€
|

= (wllp wy', wzb = (- c.l? ’ 0, 0) (8'35)

(wy, wy, w,)=(-as, 0, 0)

The velocity of an invariable point in the vessel, say P, is
V= (Vy,V,, V;*)=(0, u+Ga lcosge+Gez’, - Gelsinge-Gay’), (8.36)
= (Vg, Vy, V;)=(0, mcosqg+1+20, qusing- Gz y) .

In particular, if cos (n, y), ... denote the direction cosines of the outward
directed normal to surface Z(t) at point P, we have

Vo=@ [cos (n, y) cos gz + cos (n, z) sin gz ] (8.37)
+q’[ (1 + 2) cos (n, y) - ¥ cos (n, z) ]
when referred to moving axes oxyz.

Assume the liquid to be homogeneous and incompressible throughout the motion.
Neglect surface and interfacial tension forces and capillary contact effects between
liquid and boundary. Moreover, let the absolute motion of the liquid be irrotational.
Then the motion of the system is completely described by the following formulae:
Equation for continuity of liquid

q=Ve¢, V- =0, PeT(t), (8.38)

Ap=0, PeT(t),
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Boundary conditions for liquid (kinematical)
[ & [cos (n, y) cos qg + cos (n, z) sin qs] (8.39)

+Ga [(1 + z) cos (n, y) - y cos (n, z)], PeZI(t)y

3¢ - |
dn & [ cos (n, y) cos qa + cos (n, z) sin qs )

+ 4 {(1 +2)cos (n, y)-ycos(n, 2]
+ {, cos (n, z), Pe8(t)
Constancy of pressure at free surface
pg% +pg (¢ cosap-yslnqg)+-29v’--29V’=0,P€S(t) (8. 40)
v=[ve - VI

Equilibrium conditions
MG +M°loge + Ky o - Fy/ =0, (8.41)
MPlo G + M°(R®+16°) Go+ Kr g - M log singe+ My’=0 .

F,’and M,’ denote the force and moment produced by the liquid motion along the
y'-axis and about the center of rotation respectively.

Utilizing the same arguments presented previously, we arrive at the following
linear description of our system

A9 =0, PeT (8.42)
Y {E;;cos(n, y)+G ((1+2) cos(n,y)-yoos(n, z)], PeL ,
@cos(n, y)+al(l+z)cos(n y)-ycos(n z)l+{,, PS8,
P %% +PgL -PEYy®=0, PeS
M G+Mlbd+Ka-F=0 (8.43)

Mlogy + M@2 + 1% Ga+ (Ke - M log) @a + My/ =0
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f3 (2
F,::-p‘g:r-a—y-(f)d‘r=-Ps‘P‘z -g—%cos(n. y) &8 (8.44)

M,z:pfﬂ[(1+z) (a¢) ya (a¢)3d‘r
T

-pg[[yClas-pgri* g
3

=p H‘[(l + z) cos (n, y) - y cos (n, z)] a¢ as
S+

-pgflytas-pegri*e
S

*is the distance from the undisturbed center of gravity of the liquid proper to the
center of rotation.

Similarly, introduce functions @*, @¥, ¢, harmonic in T, such that

¢ =qof+q o+ (8.45)

satisfying conditions
*
%‘S‘= cos (n, y), _%(%5 =cos (n, y)(1 + z) - cos (n, z) y, Pe%L, S,

0, PeX ,
(8.46)

lw
=
I

L., PeS .

oI are the potentials of Stokes for our problem. They are determined solely from
the geometry of T , the plane S being replaced by a rigid lid.

With (8.45), the force expression (8.43,) becomes

F,’ —pql‘[f(pfcos(n y) ds - pcp‘ﬂ‘(ps"cos(n y) as - pﬂ_‘Pcos(n y) dS
Z+S T+s 9

But, from (8.46), cos (n, y) =-aa—(%f , and

-p & If cos (n, y) ¢¥dS = -p ng% ofds ,
s

-P%Efsc“(n' y)¢3ds=-9¢z+ﬂ‘s%%r¢§ds.
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¥ d¢p
ot

‘”le’
<]

-Pz,gs%?cos(n,y)ds=-p.ﬂ' as .

Z+8

Application of Green's theorem gives

-pqxf.f—ﬂ et ds=-p & [ Vot vof ar,
+8 T

-P & J]'E‘e%;ds_-pq,m Vot v okdr,
Z+8
because A ©¥ = Aod = 0. Also since A%‘f=0and

0 , PeL,
3= 8D -
Cw , PE€S,

we have

'PlT 2ot iﬁ‘-Pﬂ‘Psztds
on ot S

Thus, the expression for the force (8.43,) takes the form

Fa'=ap[[fvotvotar -ao [[fvervesdr -p [J oft.. (8.47)
T T S

Agaln, with (8.45), the moment expression (8.433) becomes

My’ =p 4 ﬂ' [@ +2)cos (n, y) -ycos (n, z)]of dS+p & ﬂ'[(1+ z)cos(n, y)-y cos(n, z)] @"*dS
Z+8

+pzﬂ[(l+z)cos (n, y) - y cos (n, z)]yds pgﬂ yld8-pTgl*qs.
+S

However, from (8.486), (1 + z) cos (n, y) -y cos (n, 2) = _a_g;' , and

p &l [(+2)cos(n, y)-ycosn, z]otds=p q;ﬂ’—g(pfds P qlmvwswrdr
Z+8 E+S T

p thJ.T (@ + 2) cos (n, y) - y cos (n, 2)]oh s = pqazﬂ-a-‘eiw’tds pda .ﬂTVﬁ Vof dr .
+S
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Also,

) 3
PE{£[(1+2) cos (n, y) - y cos (n, z)]sf§=ng‘sgfi a_t(pds '

and since A %t‘e =0,

0 , PeL,
3¢ _
°n i, PeS,

we get

P [[L0+2) cos @, y)-ycos(n, 9152 as - p b Lo as .
Z+S S

Hence, the expression for the moment (8.442) takes the form

My =G p [f Vo vot dr+ Gap [[[ vo¥ vordr+p [[ of L ds (8.48)
T T S

-pgffytdas-pgTi*g .
S

With (8.47-48), we may write the equilibrium conditions (8.43) in the form

2 “ 2
L ot Gt X D Ga+P JOF Lo a8+ [Jea L dS = 0, (8.49)
S S
where

fan =M%+ 0 [[I Vo voidr,
T

2 o)
Mln= >
M°L,  M° (L + R

b“=K°“ - P g71*5.2 ’

K, 0

Q

Kln=( )
0 K.-M°glo

€a=-P gy O
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The condition of constancy of pressure at the free surface (8.423) becomes
2 L 2
PL q*¥q +pP ig)+ng+ZJ €s Qu = 0 .,
1 ot 1
We can eliminate potential ¢ from this equality, expressing it through the free

‘boundary ¢ = N{. as in (7.4). Hence,

2 2 )
P'f(PfQ-+PNCet+PEC+¥e-CI-=0- (8.50)

Variational Formulation: Let us construct the Lagrange function L = T - Il for
our system. The kinetic energy may be written as

T =T*+ T,
T*=1/2M° (4 +1a)® +1/2M° R, Ty =1/2p [[[ (Ve@)2 ar .
T
T¥* is the kinetic energy of the vessel proper, and T, the kinetic energy of the
oscillating liquid. With (8.45), we have
Vo= @ Vel +an VoF+Vo,

where ¢f, ¥ are the potentials of Stokes which are determined solely from the
geometry of the cavity (8.46,) and ¢ is the potential of wave motion in the
vessel satisfying (8.463). Thus

T=1/22 T 8 & +Z & P JJ Vo vodr+1/2p [[[(ve)?ar. (8.51)
T T
with a,, previously defined. The integration indicated in (8.51) should be carried out
over the volume which the liquid occupies in the position of equilibrium.
Consider the potential energy of the system,
I'I = H*+ n]_

{o]
N*-1/2K o + 1/2K, o + MoBb o T =pg [[f 2/ar .
T(t)

IT*1g the potential energy of the system in the absence of liquid, and I1, the

potential energy of the liquid. The integral appearing in the expreassion for Il,
can be written as
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(o] g'”‘f z'dT=p g‘ﬂ‘fz'd1'+pg‘ﬂ]‘ z'dr
T T Ti(t)

= ng:H‘z'dT+p gm(l+z)cosqp—y sin g JdT ,
T Ti(t)

where T is the volume occupied by the liquid in the equilibrium position, and
T,(t) is the volume enclosed between the free surface z = { (y, z, t) and the
plane S(z = 0). The first integral in the right-hand member of this expression

represents the potential energy of the liquid if the free surface were replaced
by a rigid 1lid. Thus, we can write

P g‘m‘z'd‘r=pg1'z*'
p

where z*’ is the ordinate of the center of gravity of the liquid. However
z* " =1%cos gz, so that

Jo] gﬁT z'dT=pgT1l¥cos gz ~ - 1/2 p g T1* g + const.
T

In addition,

P gﬁf[(l+z) cosqg-ysin'qa]d‘ré pgﬂ]‘[(z{h - gayldr
Ta(t) Ti(t)

=pgﬂdsj;c Lz+1) - ge yldz
S

~1/2pg[[8?ds-Pgas [Jy L as.
S S

The total potential energy of the system is therefore

2 2 2
H=1/2%3‘113b.nq.qn+Pg/2iTC2dS+213q.ﬂe.CdS, (8.52)
S S

in which by, and e, are the same quantities defined earlier.
By definition, the Lagrange function L is simply

2 2 . . 2 ,
L=T-TM-12Z% aun a qn+{3q.pm‘v(pf Vo vedr (8.53)
T
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+1/2p [[[ (99)?dT -1/2 E T by au as - 1/2P g [f L7 68
T S

2
-Eq.ﬂ'e.CdS.
1 S

According to Hamilton's principle
61 = O (8.54)
where 51 is an isochronous variation of the line integral
' t
1=f" Lat.
Using (8.53) rewrite (8.54) as
v.2 2 , 22 2 ,
812 ["(2 2 a0 6@/ -Z L buan brPZba W vel vodr  (8.56)
T

2
+ p}i‘, a [[[ver vepdr+ o[[[vevse dr- pg[l¢gagds
T T 8

2 2 .
T8 [etdaS-Ta [Je 6La8at=0.
1 8 1 s

But, from (8.463) and A ¢ = 0, we have

[fvevepar= [Jo _B_agg ds .
T 8 n

Moreover, it follows from (8.46s) that

8¢
an 6‘\.?‘3,

80 that

Ingwdfs Jg"uc.ds.

Also, from (8.464) and A = 0, we get

[T vet voar - [ or 3Pas = Jor 2, a8
T L+8 n 8
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Similarly, we can show

[l o vopar = [ ot B9 as=[or 62,8
T T+ n S

Therefore (8.55) may be rewritten in the following way:

2 2 , 2 , ,
L‘{g z (Bas @’ 6’ - ban @n 6a) + [I c'f (PoF (L. 6q + an 6L:)

e, (£ 6an +qu b))+ (0bL.-pglbL)]ds }dt=0.

Integrating by parts and using the isochronism of the variations, we obtain

2 2 ) 2 2
JHIEZ (amar+ba @)+ 2P [Jo*Cu aS+Z e, Las 18 g,
o 11 1 g 1g

5 2 |
+H(p?q.(pf+ﬁ%t‘ﬂ+9gC+?e. q)6C dsldt=o0.
S

By virtue of the arbitrariness of the variations, we get from this

2 2

‘-'i?a.nq£+?b.nqn+Pg<prCudS+Jge.cdS=0 (8.56)
2 2

PE a of +p2X¥ +P g+ e q =0
1 ot 1

which is the same as before if we put ¢ = N, in the last expression.

Free Oscillations: Before we proceed to determine the free vibrations of the system,
let us simplify the problem somewhat further. Let the free surface be replaced by

a lid (£ = 0 in (8.56)). Then, if the system is conservative and its position of
equilibrium stable, there exist principal coordinates £, such that the linear trans-

formation 2
G = '{: Pa1 €1(t) (8.57)

reduces [ 12 Jto two independent second order differential equations in £, .
®4; satisfy the orthonormal conditions

2 2
zZ Agn ¢.k Pa1 = 61;1
11
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Thus, according to vibration theory, we obtain

E o[l ot*Cudas+ Q38 + [fviCas=0, (8. 58)
S S

where §); are the natural frequencies of the system when the free surface is
covered with a lid, and

2 2
(pf*:? Pu1 (P:", U1=¥ Pu1 €4 .

With (8.57), condition (8.50 becomes
P%‘Pf*éx+PNCtt+PSC+%V1§1=0- (8.59)
Equation (8.58-59) are sufficient to determine the free oscillations of the system,
and are somewhat simpler than (8. 56).
Suppose
£,=X, sinot, {=Esin0t. (8.60)

With (8.60), system (8.58-59) becomes

&

(02-Q3) X, - [J (v, -02pot*) . E (8. 61)
S

j
(=

2
p(oaN-g)-‘{l (vi-0?pol*) X, =

Let the eigenfunctions Ey of the free oscillation problem (stationary vessel)
be known. They satisfy the obvious properties

lezé-!k

(zk.:,)zf 0 L 3fk
=

1=k.

Since X, is a system of functions complete with respeoct to integration over 8, it
is natural to assume that

E=‘EOkEk-
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With the substitution of this expansion in (8.61) and appropriate use of the
orthogonality relations, we arrive at the following system of algebraic equations:

(02- Q1) X, + % (62An-Bu)ex=0, (1=1, 2), (8.62)

2
(ak 0'3- Bk) Ck+.?.(ca Ay - B,k)Xl =.0 , (k: 1, 2,...)

where

A1k=P,ﬂ“PT*Ede, By = Hl’xak das,
S S

ox = &?—HEJ’ , Be=p gl B2,

Equations (8. 62) hold for each 1 and k respectively, so that we have a set
of linear simultaneous equations for the coefficients X;, X3, ¢, ¢z,..., which
are homogeneous. Such a set of equations will have a non vanishing solution only
if the determinant formed from the coefficients of the unknown X; and c; vanishes.
Therefore

0%~ Q7? 0 02An -By 0°A;-Bie ....0° A, - By, (8.63)
0 a®- Q3 0°An - B 0°Az ~-Bz ....0% Az - Bz

0°A;- By 0°Az -Bx a1 0°-B 0 =0.

0% Aje - Bz 0°Ax - B 0 az0%-B>  .... 0

craAlu - Bia caAZn'an 0 0 ve.. Op Ua-ﬁn

The elements symmetrical to the main diagonal are equal; hence the roots of
o2are real.

We see that the computation of the natural frequencies and forms of
oscillations for the system is a very laborious process. If the coefficients of
the terms accounting for the reciprical oscillations are small, i. e., if the natural
frequencies of the system differ but little from €2, , then we can simplify the
calculations by using perturbation techniques.

Perturbation methods are particularly appropriate whenever the problem undér

consideration closely resembles one which is exactly solvable (such as this problem).
It presumes that these differences are not singular in character, indeed, that one
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may change from the exactly solvable situation to the problem under consideration
in a gradual fashion. This is expressed analytically by requiring that the
perturbation be a continuous function of a parameter A, measuring the strength of
the perturbation,

With A, we write (8. 62) in the form

(0% - ‘H)x1+xkz (63 AK)ex=0
(ay 03 -By)ex+ A kz (0% A - B ) X1 =0

Solutions to this system of equations are sought as infinite series in powers of A ,
«® ® P [ ]
X122 X, AT, Cc =2 e, AT, 0°=Z 02 A" .
0 0 0
Equating the coefficients of the successive powers of Ato zero gives, for zero order
quantities,
xb(og -Q?)'-'O.
Cio (08 ax - By ) =0.
This system of equations has a solution if 0§ = QF or & = B« /o . Since we wish
to determine the frequencies of the system close to those of the system when 8 is
replaced by a rigid 11d, the solution 0 = By/ax must be rejected. To be specific,
let 0° = Qf; then Xgo = Cigs = 0 , and we may take X0 = 1. For the first order
quantities, we have the equations
Xu(od -Qf)=-0%,
Xa: (ag-n:)=ol
ou (08 ax - By ) =- (A QFf - By) .
The condition for solvability of the first equation of this system is

01.=0 .

Hence we can always assume that X;; = 0. Also, it follows that

X =0, 0g = - 34;&‘-7:3& .

1 Oy -
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For the second order quantities, we find that X,z and 03 satisfy the equation
X2 (06°- %) = - 0F - 15 Cu (A1 O, - Byi)

For this equation to be solvable, it is necessary and sufficient that the right-hand
member be equal to zero;i.e.,

2 2
O'azz (A n _Bk)
7k QF ay - B«

wherein we have substituted the previously obtained value for Cyy. Therefore, we
have to the second order

0= 02+2%z (A Qf - By )* 8.64
! kK QFf ax - By ( )

we may use (8.64) for A = 1. The foregoing scheme is a modification of the
Feenberg perturbation formula [ 6 J.

Let us introduce the linear transformation (8.57) in the expressions for
the kinetic energy (8.51) and the potential energy (8.52). Thus, in the new variables,
we have

2
T-T*+ L &rp [/ vetrrvoar+1/2p ([T ()2 ar,
T T
2
M- 0%+ 3 g fvitas+1/2pg [ as,
S S

where

2 ) 2
T*=1/2? £27, M* = 1/2% Qfe?
2
‘P')T*= ? ¢l1‘p*:l V1=E ¢l1el'

The Lagrange function becomes

2 2
L =T¥%- H*”_{‘ £1p[If vt vo ar+1/2p [[f (v@2 ar - L& lsTVl zds (8. 65)
T T

-1/2pg[[CPas,
S
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or, since

Jff vom voar=- [JoMe, as,
T S
Ej(v¢)ad7 =,H‘ (0%2 ds:ﬂ‘PCcdS=,ﬂ‘ Ng.- L. ds,
T T+ " S S
2 . 2
L=T*-M*+Z g,pgcpr*c‘ch, 1/ZP£J'NCg'ngS- z e;gw ¢ ds (8. 66)
-1/2p gl ¢Pas
S

Substitute (8.60) into the line integral

1=["Lat,
(o]
using the form of L given by (8.66), and integrate over t from 0 to %l .
This gives, after omitting a non-essential multiplicative factor,
I=c’{1/2% xﬁwzfxxp,gcpr*s as+1/2p[[NE" = a8} . (8.67)
S

2 2
-{1/z§ Q?X5+?X;Hv;EdS+1/2pgﬂ'EQdS}.
S S

Thus the problem of free oscillations of our system is reduced to one of determining
vector X, function =, and parameter 0 which make the variation of functional
(8.67) vanish. To be sure, if the eigenfunctions of the free oscillation problem for

a stationary vessel are known, the extremum of functional (8.67) gives the equations
(8.62). If these are not available we can solve the variational problem by application
of the method of Ritz.

Let there be a system of functions Xy complete with respect to integration over
S, and assume that

—t n
CX =E Ckxk .
1

After construction relations



There results the system of algebraic equations

(e?-ad) X1+%(G.An_:-3u:)ck'0. (1=1, 2), (8.68)
n
217 (0° Ay -Bu)xx-*}? (0®ai- Bu)er=0, (k=1, 2,..., n),

h
where A;g=PJ‘£(Pka ds, Blk=glel£’

o =P J.Nxx'xnds. ﬁ1k=98ﬁx1xk@.
8 8

and o1k = Oy (from Green's formula).

Equations (8.688) hold for each | and k respectively, so that we have a
get of linear simultaneous equations for the coefficients X;, X3, ¢1, €3, ...., Cx,
which are homogeneous. Such a set of equations will have a non-vanishing solution
if the determinant formed from the coefficients of the unknown X; and ¢y vanishes.

Therefore
o3 - Q3 0 0%An -Bu  0°Aj - Bia .... 0% Al - Bua] (8.69)
0 o® - Q3 0°Aa-Ba 0°Ag-Bgm .... 0% Ay - Ba
0%°An -Buy 0% Ag; -Ba o ay - By 0%a1iz-Ba .... % aw - B
=0.
0°Ay3 - Bia 0%Ax - Bx 0 an - Ba 0%ax - Bx .... 0% az. - B2y
0%Ain -Byy  O°Ag - Ba 0 an - Bn 0* 0w -Bas.... 0% - Bra

The elements symmetrical to the main diagonal are equal; hence the roots 02 are
Teal.

We now consider the general theory of small vibrations of a conservative
system with a liquid cavity.
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SMALL OSCILLATION THEORY

Now consider the motion of a solid body with a liquid-containing cavity about
the position of equilibrium. As previously, but with slightly different notation, we )
assume the velocity of the liquid particles to be represented as

q="¢ +q"
It has been shown that
3 3
*=ZwVgF + T w, Vo, (8.70)
1 1
where ¢ = (m = 1,2,...,6) are Stokes potentials satisfying the boundary value
problem (2.35). Hence, function ¢ must satisfy
0 , Pel,
o
on L. , PeS .

z = £ (P, t) is the equation of the free surface in the system of coordinates rigidly
connected with the body.

Now suppose the motion of the solid body to be defined by the generalized
coordinates yseney Qg Then, by analogy with (8.70), we write

6
a=Veo+ ? dl v <Pr
and assume the expression for the kinetic energy of the system as follows

6 6 .o '
T=1/2 2 T My a4 + 02 I (ve)2ar (8.71)
T
6
+Z &y P [ ve vor ar.
T

Here
M, =M% + 0 [[] v o vokar,
and

{MZ,} is the matrix of the coefficients of the quadratic form representing the
kinetic energy of the solid body.
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Let us now consider the small oscillations of a conservative system K which
has N degrees of freedom, and let ay (m =1, 2,...N) be the generalized coordinates
of the system. Suppose there is a solid body with a liquid cavity among the members
of this oscillatory system. Then, without loss of generality, the kinetic energy of
system K can be described by (8.71) in which the summation now extends from 1 to N.

We now compute the potential energy Il of system K. If the free surface is
"capped" off (inthis case we denote it by K¥), then

NN
= T*= 1/2){.? bap Oy O . (8.72)

If we consider only the case when the equilibrium of system K¥is stable, M¥is
positive definite. = This assumption is very important because if K* is unstable
the deviation rapidly ceasesto be small and the theory makes no sense.

If the liquid does not fill the cavity completely, the potential energy of K is
made up of (8. 72) and of the potential energy of the oscillating liquid. The latter, in
turn, may be represented as a sum of two terms, one of which is the potential energy
of the liquid oscillating in a fixed vessel

m -1/2eg [[ ¢2as
S

As the liquid participates in the motion of the system through transport, its
potential energy also depends on the coordinates a,; consequently it should contain
a term of the form

2
My=Z o, [ € ¢ dS
1 s

where functions e, are determined solely by the geometry of the cavity. Since
U { dS = 0 we may assume, again without loss of generality, that H e, dS =0,

S S

Hence, we write the potential energy of system K as follows:

NN
n- 1/221:'15b,na.an+1/2pgﬂ" 2 ds (8.73)
s
N
+ Z oz.ﬂe, £ ds.
1 S



The problem may be simplified somewhat if we introduce new variables .
Since system K*is conservative and its position of equilibrium stable, there exist
principal coordinates £, (t) such that the linear transformation

N
Oy =El Par €1 (1)
simultaneously diagonalizes Il *and T¥*:

N N
T*=1/2'{.df, ﬂ*=1/2'{.ﬂfai.

£, are the natural frequencies of the system when the free surface is ""capped-off".

In the new variables, we have

N .
T=T"+ 2 p[lfve vortar +1/2p0 I (ve)2dr, (8.74)
T T
nzn*+$a. Jvatas+120¢gffC2as.
g s

Here

N N
<P§**=?¢1.<Pf, Va =?¢1l el .

By eliminating ¢ and using Green's formula(8. 74,) becomes

N
T=T*+zl';pﬂ(p:** goaS+1/2p [ NCu- Lo dsS . (8.75)
s 8

Applying Hamilton's principle and repeating the considerations used in the
construction of the launch vehicle equations, we obtain the following system of
equations for the oscillations of system K:

E+p[Tot*tunas+ Y &1+ [TviCas=o0 (8.76)
S S

N - N
P?qo;**§1+9 N&e+P gl +?V1§1=0.

System (8.58,59), which determines the oscillations of the launch vehicle,
was a particular case of the system of integro-differential equations (8.76).
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Using the methods of functional analysis, we can show that the following
properties hold:

Theorem I. If system K consists of a finite number of conservative members and
contains a finite number of cavities partly filled with liquid, and if the potential
energy of the system has a minimum in the equilibrium position, then

(1) In the motion of this system about the equilibrium position there

exist principal oscillations, and system (8.76) has a solution of the
form

0 = X, eiO’t L =X eiO’t;

(2) The frequencies of these oscillations are real quantities and 0, — =
withn — =, This means that the position of equilibrium is stable;

(3) Any free motion of K may be represented as a superposition of
oscillations, i.e., the system of principal oscillations is complete;

(4) Free oscillations and frequencies can be found by Ritz's method.

Theorem II. If the potential energy is not a minimum in the equilibrium position,
then there is at least one negative quantity among the 07 .
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NOTES PERTAINING TO TEXT

!(4g = (49) +®x 3
dt inertial space dt moving space

2 When S(t) is a free surface consisting of material particles moving with velocity
¥.If z - £ = 0 is the equation of the surface, we must have d( z - £)/dt = 0 so that

Le=- Vs iC"Vyig"'vz
ox dy

G (v v v - (-3 - 35 0)
But

(-2£, %5 L1 =9 (z-C),
and since

v (2-Z) = (cos (n, x), cos (n, y), cos (n, 2)) /cos (n, 2)
we get
va =, cos(n, 2) ,

where

Va = vy co8 (n, X) + vy cos (n, y) + v; cos(n, z)
is the velocity along the normal to S(t) .

Similarly

an =Vn+cg005(n, z) .



3 This could also be anticipated from the divergence theorem,

ffv-var=0=[ v.as=[] ¢ cos(n, z)ds = H g dxdy .
T(t) S(t)+Z(t) S(t)

The first of these conditions is introduced to eliminate an arbitrary additive
constant, and the second condition must be satisfied by the norma.l derivative
of any function harmonic in the domain 7.
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